Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse q...Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications.展开更多
As integrated circuits scale down in size, a single high-energy ion strike often affects multiple adjacent logic nodes.The so-called single-event transient(SET) pulse quenching induced by single-event charge sharing...As integrated circuits scale down in size, a single high-energy ion strike often affects multiple adjacent logic nodes.The so-called single-event transient(SET) pulse quenching induced by single-event charge sharing collection has been widely studied. In this paper, SET pulse quenching enhancement is found in dummy gate isolated adjacent logic nodes compared with that isolated by the common shallow trench isolation(STI). The physical mechanism is studied in depth and this isolation technique is explored for SET mitigation in combinational standard cells. Three-dimensional(3D) technology computer-aided design simulation(TCAD) results show that this technique can achieve efficient SET mitigation.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61376109,61434007,and 61176030)
文摘Charge sharing is becoming an important topic as the feature size scales down in fin field-effect-transistor (FinFET) technology. However, the studies of charge sharing induced single-event transient (SET) pulse quenching with bulk FinFET are reported seldomly. Using three-dimensional technology computer aided design (3DTCAD) mixed-mode simulations, the effects of supply voltage and body-biasing on SET pulse quenching are investigated for the first time in bulk FinFET process. Research results indicate that due to an enhanced charge sharing effect, the propagating SET pulse width decreases with reducing supply voltage. Moreover, compared with reverse body-biasing (RBB), the circuit with forward body-biasing (FBB) is vulnerable to charge sharing and can effectively mitigate the propagating SET pulse width up to 53% at least. This can provide guidance for radiation-hardened bulk FinFET technology especially in low power and high performance applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61376109)the Opening Project of National Key Laboratory of Science and Technology on Reliability Physics and Application Technology of Electrical Component,China(Grant No.ZHD201202)
文摘As integrated circuits scale down in size, a single high-energy ion strike often affects multiple adjacent logic nodes.The so-called single-event transient(SET) pulse quenching induced by single-event charge sharing collection has been widely studied. In this paper, SET pulse quenching enhancement is found in dummy gate isolated adjacent logic nodes compared with that isolated by the common shallow trench isolation(STI). The physical mechanism is studied in depth and this isolation technique is explored for SET mitigation in combinational standard cells. Three-dimensional(3D) technology computer-aided design simulation(TCAD) results show that this technique can achieve efficient SET mitigation.