In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF...In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.展开更多
With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion ...With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion batteries, the unconventional anode materials such as tin, silicon, metallic lithium, and transition-metal oxides have been extensively studied due to the high capacity, but they are still inapplicable because of the low initial coulombic efficiency(ICE) and/or the poor cycling stability [5–9].展开更多
Dense and submicron-grained NiAl-Al2O3 composite was fabricated by pulse current auxiliary sintering(PCAS).Its microstructure was analyzed by XRD,SEM and TEM,and its mechanical behavior was evaluated through compres...Dense and submicron-grained NiAl-Al2O3 composite was fabricated by pulse current auxiliary sintering(PCAS).Its microstructure was analyzed by XRD,SEM and TEM,and its mechanical behavior was evaluated through compression test and fracture toughness test.The average grain sizes of NiAl and Al2O3 are about 200 nm and 100 nm respectively.The Al2O3 particles dispersed in NiAl matrix,forming intergranular structure and intragranular structure.During sintering,Al2O3 particles were remarkably spherized due to the unique sintering mechanism of PCAS,which is beneficial to the improvement of toughness.The NiAl-Al2O3 composite exhibits high compressive yield strength,whether at room temperature or elevated temperature.Its room-temperature(23 ℃) and elevated-temperature(1 200 ℃) compressive yield strength are up to 2 050 MPa and 140 MPa,respectively.Meanwhile,its fracture toughness is significantly enhanced,which is up to 8.2 MPa?m1/2.It is suggested that the main strengthening-toughening mechanisms are grain refinement strengthening and Al2O3 dispersion strengthening.The fracture of larger NiAl grain is the transgranular cleavage and this is induced by crack tip deflection and grain boundary weakening which are caused by intergranular and intragranular Al2O3 particles,respectively.展开更多
The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage du...The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions. It is found that the current paths for conductive are different from those for non-conductive materials. For non-conductive materials, sintering resistances are influenced by powder sizes and heating rates, which indicates that pulse current has some interaction with non-conductive powders. For conductive TiB2 , sintering resistances are influenced by heating rates and ball-milling time, which indicates the effect of powders activated by spark.展开更多
Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismat...Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter.展开更多
A novel metal matrix composites(MMC)with Mg matrix reinforced with natural filler in the form of Didymosphenia geminata frustules(algae with distinctive siliceous shells)are presented in this work.Pulse plasma sinteri...A novel metal matrix composites(MMC)with Mg matrix reinforced with natural filler in the form of Didymosphenia geminata frustules(algae with distinctive siliceous shells)are presented in this work.Pulse plasma sintering(PPS)was used to manufacture Mg-based composites with 1,5 and 10 vol.%ceramic filler.As a reference,pure Mg was sintered.The results show that the addition of 1 vol.%Didymosphenia geminata frustules to the Mg matrix increases its corrosion resistance by supporting passivation reactions,and do not affect the morphology of L929 fibroblasts.Addition of 5 vol.%the filler does not cause cytotoxic effects,but it supports microgalvanic reactions leading to the greater corrosion rate.Higher content than 5 vol.%the filler causes significant microgalvanic corrosion,as well as increases cytotoxicity due to the greater micro-galvanic effect of the composites containing 10 and 15 vol.%diatoms.The results of contact angle measurements show the hydrophilic character of the investigated materials,with slightly increase in numerical values with addition of amount of ceramic reinforcement.The addition of Didymosphenia geminata frustules causes changes in a thermo-elastic properties such as mean apparent value of coefficient of thermal expansion(CTE)and thermal conductivity(λ).The addition of siliceous reinforcement resulted in a linear decrease of CTE and reduction in thermal conductivity over the entire temperature range.With the increasing addition of Didymosphenia geminata frustules,an increase in strength with a decrease in compressive strain is observed.In all composites an increase in microhardness was attained.The results clearly indicate that filler in the form of Didymosphenia geminata frustules may significantly change the most important properties of pure Mg,indicating its wide potential in the application of Mg-based composites with a special focus on biomedical use.展开更多
ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 c...ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150℃-1850℃ range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350℃ and 1450℃ exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850℃ in vacuum.展开更多
Ultra-high temperature ceramics (UHTCs) are most recently getting much attention for structural parts of hypersonic missiles with their cruising speed of more than Mach 5. Most of the UHTCs are poor sinterability carb...Ultra-high temperature ceramics (UHTCs) are most recently getting much attention for structural parts of hypersonic missiles with their cruising speed of more than Mach 5. Most of the UHTCs are poor sinterability carbides, nitrides, and borides. Therefore, they have been studied and developed for a long time. However, there are still many problems to solve. In this paper, based on the solid-state reaction presented as an equation of (x + y)·ZrC + 2·y·B → x·ZrC + y·ZrB<sub>2</sub> + y·C, three-phase ZrC/ZrB<sub>2</sub>/C composites have been fabricated from ZrC and amorphous B powders using pulsed electric-current pressure sintering at 1373 to 2173 K for 6.0 × 10<sup>2</sup> s under 50 MPa in a vacuum. ZrC/ZrB2/C = 30/70/C~70/30/C vol% composites with the relative densities D<sub>r</sub> of 96.6 to 98.7% were obtained at 2073 K. The 60/40/C vol% composite revealed high bending strength σ<sub>b</sub> (554 MPa), Vickers hardness H<sub>v</sub> (19.2 GPa) and moderate fracture toughness K<sub>IC</sub> (5.25 MPa·m<sup>1/2</sup>) at room temperature. Furthermore, all composites showed elastic deformation up to 1873 K and revealed σ<sub>b</sub> more than 600 MPa at this temperature, in addition, some composites showed higher σ<sub>b</sub> than 900 MPa at the same temperature. These high mechanical behaviors are discussed with those of the simple binary ZrC/ZrB<sub>2</sub> composites which were fabricated under the same conditions except for their starting materials. The best mechanical properties of binary composites were σ<sub>b</sub> (474 MPa), H<sub>v</sub> (18.5 GPa), and K<sub>IC</sub> (4.45 MPa·m<sup>1/2</sup>) at room temperature, and σ<sub>b</sub> of 400 - 700 MPa at 1873 K. Overall, three-phase composites, nevertheless including soft carbon, have higher mechanical properties than the binary composites.展开更多
In this study we fabricated, for the first time, magnesium gallate (MgGa_(2)O_(4), a partially inverted spinel) transparent ceramics, both undoped and doped with 1 at% Ni. The specimens were derived from in-house prep...In this study we fabricated, for the first time, magnesium gallate (MgGa_(2)O_(4), a partially inverted spinel) transparent ceramics, both undoped and doped with 1 at% Ni. The specimens were derived from in-house prepared powder, with a crystallite size of ∼10 nm (by wet chemistry) and densified by pulsed electric current sintering (PECS;peak temperature 950 ℃ for 90 min). Densification levels of 99.84% and 99.52% of theoretical density were attained for doped and undoped materials, respectively. Doping with Ni was seen to marginally improve the densification level. Quite transparent specimens were produced: the best showing transmission of ∼89% of the theoretical level (thickness t = 0.85 mm). The absorption spectra revealed that the dopant was accumulated as Ni^(2+) in the octahedral sites of the lattice, as occurs in single-crystal specimens. After excitation at 980 nm, the doped disks exhibited a wide fluorescence band centered at 1264 nm.展开更多
文摘In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.
基金supported by the Key Research and Development of Ministry of Science and Technology of China(No.2018YFE0202601)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LTY20E010001)。
文摘With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion batteries, the unconventional anode materials such as tin, silicon, metallic lithium, and transition-metal oxides have been extensively studied due to the high capacity, but they are still inapplicable because of the low initial coulombic efficiency(ICE) and/or the poor cycling stability [5–9].
文摘Dense and submicron-grained NiAl-Al2O3 composite was fabricated by pulse current auxiliary sintering(PCAS).Its microstructure was analyzed by XRD,SEM and TEM,and its mechanical behavior was evaluated through compression test and fracture toughness test.The average grain sizes of NiAl and Al2O3 are about 200 nm and 100 nm respectively.The Al2O3 particles dispersed in NiAl matrix,forming intergranular structure and intragranular structure.During sintering,Al2O3 particles were remarkably spherized due to the unique sintering mechanism of PCAS,which is beneficial to the improvement of toughness.The NiAl-Al2O3 composite exhibits high compressive yield strength,whether at room temperature or elevated temperature.Its room-temperature(23 ℃) and elevated-temperature(1 200 ℃) compressive yield strength are up to 2 050 MPa and 140 MPa,respectively.Meanwhile,its fracture toughness is significantly enhanced,which is up to 8.2 MPa?m1/2.It is suggested that the main strengthening-toughening mechanisms are grain refinement strengthening and Al2O3 dispersion strengthening.The fracture of larger NiAl grain is the transgranular cleavage and this is induced by crack tip deflection and grain boundary weakening which are caused by intergranular and intragranular Al2O3 particles,respectively.
基金Supported by the Natural Science Foundation of China (59872024) Key Teacher Fund of National Education Ministry and Fund of State Key Lab of Plastic Forming Simulation and Die and Mould Technology(02 -11)
文摘The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions. It is found that the current paths for conductive are different from those for non-conductive materials. For non-conductive materials, sintering resistances are influenced by powder sizes and heating rates, which indicates that pulse current has some interaction with non-conductive powders. For conductive TiB2 , sintering resistances are influenced by heating rates and ball-milling time, which indicates the effect of powders activated by spark.
基金This work was supported by the National Natural Science Foundation of China under grant No.50232020 and 50220160657.
文摘Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter.
基金Izabela B.Zgłobicka acknowledges the funding provided by National Science Center for providing financial support to project Metal Matrix Composites with natural filler(Grant No.2018/31/D/ST8/00890).The authors are grateful to Dr Matt P.Ashworth from the University of Texas at Austin(USA)for critically reading the manuscript and correcting the language.
文摘A novel metal matrix composites(MMC)with Mg matrix reinforced with natural filler in the form of Didymosphenia geminata frustules(algae with distinctive siliceous shells)are presented in this work.Pulse plasma sintering(PPS)was used to manufacture Mg-based composites with 1,5 and 10 vol.%ceramic filler.As a reference,pure Mg was sintered.The results show that the addition of 1 vol.%Didymosphenia geminata frustules to the Mg matrix increases its corrosion resistance by supporting passivation reactions,and do not affect the morphology of L929 fibroblasts.Addition of 5 vol.%the filler does not cause cytotoxic effects,but it supports microgalvanic reactions leading to the greater corrosion rate.Higher content than 5 vol.%the filler causes significant microgalvanic corrosion,as well as increases cytotoxicity due to the greater micro-galvanic effect of the composites containing 10 and 15 vol.%diatoms.The results of contact angle measurements show the hydrophilic character of the investigated materials,with slightly increase in numerical values with addition of amount of ceramic reinforcement.The addition of Didymosphenia geminata frustules causes changes in a thermo-elastic properties such as mean apparent value of coefficient of thermal expansion(CTE)and thermal conductivity(λ).The addition of siliceous reinforcement resulted in a linear decrease of CTE and reduction in thermal conductivity over the entire temperature range.With the increasing addition of Didymosphenia geminata frustules,an increase in strength with a decrease in compressive strain is observed.In all composites an increase in microhardness was attained.The results clearly indicate that filler in the form of Didymosphenia geminata frustules may significantly change the most important properties of pure Mg,indicating its wide potential in the application of Mg-based composites with a special focus on biomedical use.
文摘ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150℃-1850℃ range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350℃ and 1450℃ exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850℃ in vacuum.
文摘Ultra-high temperature ceramics (UHTCs) are most recently getting much attention for structural parts of hypersonic missiles with their cruising speed of more than Mach 5. Most of the UHTCs are poor sinterability carbides, nitrides, and borides. Therefore, they have been studied and developed for a long time. However, there are still many problems to solve. In this paper, based on the solid-state reaction presented as an equation of (x + y)·ZrC + 2·y·B → x·ZrC + y·ZrB<sub>2</sub> + y·C, three-phase ZrC/ZrB<sub>2</sub>/C composites have been fabricated from ZrC and amorphous B powders using pulsed electric-current pressure sintering at 1373 to 2173 K for 6.0 × 10<sup>2</sup> s under 50 MPa in a vacuum. ZrC/ZrB2/C = 30/70/C~70/30/C vol% composites with the relative densities D<sub>r</sub> of 96.6 to 98.7% were obtained at 2073 K. The 60/40/C vol% composite revealed high bending strength σ<sub>b</sub> (554 MPa), Vickers hardness H<sub>v</sub> (19.2 GPa) and moderate fracture toughness K<sub>IC</sub> (5.25 MPa·m<sup>1/2</sup>) at room temperature. Furthermore, all composites showed elastic deformation up to 1873 K and revealed σ<sub>b</sub> more than 600 MPa at this temperature, in addition, some composites showed higher σ<sub>b</sub> than 900 MPa at the same temperature. These high mechanical behaviors are discussed with those of the simple binary ZrC/ZrB<sub>2</sub> composites which were fabricated under the same conditions except for their starting materials. The best mechanical properties of binary composites were σ<sub>b</sub> (474 MPa), H<sub>v</sub> (18.5 GPa), and K<sub>IC</sub> (4.45 MPa·m<sup>1/2</sup>) at room temperature, and σ<sub>b</sub> of 400 - 700 MPa at 1873 K. Overall, three-phase composites, nevertheless including soft carbon, have higher mechanical properties than the binary composites.
基金The authors gratefully acknowledge the National Science Foundation CAREER Grant(No.1554094)Office of Naval Research(No.N00014-17-1-2548)for funding this researchPart of this material(Raman data)is based upon work supported by the National Science Foundation(No.DMR-1626164).
文摘In this study we fabricated, for the first time, magnesium gallate (MgGa_(2)O_(4), a partially inverted spinel) transparent ceramics, both undoped and doped with 1 at% Ni. The specimens were derived from in-house prepared powder, with a crystallite size of ∼10 nm (by wet chemistry) and densified by pulsed electric current sintering (PECS;peak temperature 950 ℃ for 90 min). Densification levels of 99.84% and 99.52% of theoretical density were attained for doped and undoped materials, respectively. Doping with Ni was seen to marginally improve the densification level. Quite transparent specimens were produced: the best showing transmission of ∼89% of the theoretical level (thickness t = 0.85 mm). The absorption spectra revealed that the dopant was accumulated as Ni^(2+) in the octahedral sites of the lattice, as occurs in single-crystal specimens. After excitation at 980 nm, the doped disks exhibited a wide fluorescence band centered at 1264 nm.