Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,w...Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future.展开更多
Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different mater...Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results s...In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results showed that Pt/g-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.展开更多
This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This...This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development.展开更多
基金National Natural Science Foundation of China (grants U22A20418, 22075196, and 21878204)Research Project Supported by Shanxi Scholarship Council of China (2022-050)。
文摘Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future.
基金supported by National Natural Science Foundation of China under Grant No. 51107053, 61501483 and 11402264Key Laboratory of Nondestructive Testing (Nanchang Hangkong University) ,Ministry of Education under Grant No ZD201629001+1 种基金National Key Research and Development Program of China (2016YFF0203400)Postgraduate Research & Practice Innovation Program of Jiangsu Provence under Grant No SJCX17_0487
文摘Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
文摘In this paper, methane coupling at ambient temperature, under atmospheric pressure and in the presence of hydrogen was firstly investigated by using pulse corona plasma and Pt/g-Al2O3 catalyst. Experimental results showed that Pt/g-Al2O3 catalyst has catalytic activity for methane coupling to C2H4. Over sixty percent of outcomes of C2 hydrocarbons were detected to be ethylene.
基金Sichuan province Science and Technology department( No. 2011GZ0002 and No. 2013HH0059)the university basic scientific research project( No. ZYGX2013J090 ) for funding the work
文摘This paper introduces recent research work in the field of pulsed electromagnetic non-destructive testing/evaluation.These are pulsed eddy current,pulsed magnetic flux leakage and eddy current pulsed thermography.This paper introduces pulsed electromagnetic techniques and their different case studies on defect detection as well as stress characterisation.Experimental tests have been validated and future research plans are discussed.This paper demonstrates pulsed electromagnetic non-destructive testing and evaluation for not only depth information,but also for multiple parameter measurement and multiple integration,which are important for future development.