Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production...Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.展开更多
In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhanc...In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case. Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used. The influences of the inter-pulse delay between two pulses on the LIBS signal intensity, electron temperature and density were investigated. It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction. These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.展开更多
Commercial pure Al can be refined by Pulsed Magneto-Oscillation(PMO) treatment applied via a plate induction coil above the top surface of the melt. The proportion of the equiaxed zone area increases with decreasing H...Commercial pure Al can be refined by Pulsed Magneto-Oscillation(PMO) treatment applied via a plate induction coil above the top surface of the melt. The proportion of the equiaxed zone area increases with decreasing Height to Diameter(H/D) ratios from 3.5 to1.8 and further to 1.0. Meanwhile, it increases and then decreases with increasing peak current for the three kinds of ingots with H/D ratios of 3.5, 1.8 and 1.0, respectively. However, when the H/D ratio decreases to 0.44, the area proportion of equiaxed zone can reach the maximum value with a lower peak current. FEA software simulation indicates that smaller H/D ratio results in larger current density, electromagnetic force and convection on the top surface of the melt, favoring nucleation and subsequent grain formation. Through evaluating Joule heating effect by PMO, it was found that the proper amount of Joule heating benefits grain refinement. Excessive Joule heating can reduce the size of the equiaxed zone and change the growth morphology of the grains.展开更多
Photoplethysmogram(PPG)is a noninvasive method for detecting human cardiovascular pulse wave using optical technology.The PPG containing a lot of physiological information is from the MIMIC database.This paper propose...Photoplethysmogram(PPG)is a noninvasive method for detecting human cardiovascular pulse wave using optical technology.The PPG containing a lot of physiological information is from the MIMIC database.This paper proposes a combinatorial method of ensemble empirical mode decomposition(EEMD),cepstrum,fast Fourier transform(FFT)and zero-crossing detection to improve the robustness of the estimation of pulse rate(PR),heart rate(HR)and respiratory rate(RR)from the PPG.First,the PPG signal was decomposed into finite intrinsic mode functions(IMF)by EEMD.Because of its adaptive filtering property,the different signals were reconstructed using different IMFs when estimating different physiological parameters.Second,the PR was obtained by zero-crossing detection after rejecting low frequency IMFs containing artifacts.Third,IMFs with frequency between 1.00 Hz to 1.67 Hz(60 beats/min to 100 beats/min)were selected for estimating HR.Then,the frequency band that reflects the heart activity was analyzed by the cepstrum method.Finally,the respiratory signal can be extracted from PPG signal by IMFs with frequency between 0.05 Hz to 0.75 Hz(3 breahts/min to 45 breaths/min).Then the spectrum of signal was obtained by FFT analysis and the RR was estimated by detecting the maximum frequency peak.The algorithm has been tested on MIMIC database obtained from 53 adults.The experiment results show that the physiological parameters extracted by this integrated signal processing method are consistent with the real physiological parameters.And the computation load of this method is small and the precision is high(not larger than 1.17%in error).展开更多
In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time ...In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time of pre-ionization, pulse rise time, and the pre-ionization jitter are discussed and verified through experiments. It indicates that the pre-ionization should be injected when the electric field is high enough in the gap, injection after 80% peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter, which is an intrinsic restriction of the self-triggered switch. However, when the changing rate of the pulsed electric field exceeds a certain value, the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field. Therefore, lower time jitter can be obtained under pulses with a shorter pulse rise time. In general, the results of the calculation model agree with the experimental results, and the experimental parameters which lead to a low jitter can also be used as a reference.展开更多
Heterotopic ossification (HO) may cause pain, and can lead to loss of hip motion after total hip arthroplasty (THA). There is evidence that pulsed lavage may lower the incidence of HO formation. We assessed the effect...Heterotopic ossification (HO) may cause pain, and can lead to loss of hip motion after total hip arthroplasty (THA). There is evidence that pulsed lavage may lower the incidence of HO formation. We assessed the effect of pulsed lavage on the incidence of HO in 87 male patients after THA. All patients received an uncemented THA through a posterolateral approach. 39 patients were treated with pulsed lavage (index group) and 48 males were treated without pulsed lavage (historical control group, matched on aetiology, gender, surgical approach and type of prosthesis). Both groups followed the same postoperative treatment regimen. HO severity was scored in both groups according to the Brooker classification by three blinded orthopaedic surgeons one year postoperatively. Good inter-observer agreement (Kappa 0.7) for scoring HO was found. The incidence of HO (51%) in the index group did not differ significantly (p = 0.53) from the control group (58%). However, the incidence of clinically relevant HO (Brooker grades 3 and 4) was significantly lower (p = 0.04) in the index group (3%) as compared to the control group (17%). These results suggest a beneficial effect of pulsed lavage on the incidence of severe heterotopic ossification after cementless THA in male patients.展开更多
We report the generation of high energy 2μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system.The all-fiber configuration was realized by a flexible large-mode area photonic crysta...We report the generation of high energy 2μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system.The all-fiber configuration was realized by a flexible large-mode area photonic crystal fiber(LMA-PCF).The amplifier output is a linearly-polarized 1.5 ns,100 kHz pulse train with a pulse energy of up to 250μJ.Pulse compression was achieved with(2+2)-pass chirped volume Bragg grating(CVBG)to obtain a 2.8 ps pulse width with a total pulse energy of 46μJ.The overall system compactness was enabled by the all-fiber amplifier design and the multi-pass CVBG-based compressor.The laser output was then used to demonstrate high-speed direct-writing capability on a temperature-sensitive biomaterial to change its topography(i.e.fabricate microchannels,foams and pores).The topographical modifications of biomaterials are known to influence cell behavior and fate which is potentially useful in many cell and tissue engineering applications.展开更多
A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times co...A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times compared with single pulse LIBS. The peak intensities of line Y II 366.4 nm and Zr I 468.7 nm were used in the calibration curves, and the correlation coefficients were 0.9998 and 0.9547 respectively.展开更多
The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver na...The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.展开更多
In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer diele...In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer dielectric samples is presented. The measurement-acquisition and control system not only records breakdown voltage and current, and time-to-breakdown duration, but also provides a real-time power-off protection for the power supply. Furthermore, the number of applied pulses can be calculated by the product of the time-to-breakdown duration and repetition rate. When the measured time-to-breakdown duration error is taken into account, the repetition rate of applied nanosecond-pulses should be below 40kHz. In addition, some experimental data on repetitive nanosecond-pulse breakdown of polymer films are presented and discussed.展开更多
The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the c...The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.展开更多
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis...In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.展开更多
Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employ...Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.展开更多
Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate b...Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.展开更多
A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tu...A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tube and its working principles are described. Because of the phenomenon that the deformation process of the mercury film on the electrode surface lags behind the charging process, the mercury film deformation process affects the dynamic breakdown voltage of the tube directly. The deformation of the mercury film is observed microscopically, and the dynamic breakdown voltage of the tube is messured using an oscillograph. The results show that all the parameters in the charging process, such as charging resistance, charging capacitance and DC power supply, affect the dynamic breakdown voltage of the tube. Based on these studies, the output pulse amplitude can be controlled continuously and individually by adjusting the power supply voltage. When the DC power supply is adjusted from 7 kV to 10 kV, the dynamic breakdown voltage ranges from 6.5 kV to 10 kV. According to our research, a kind of sub-nanosecond pulse generator is made, with a pulse width ranging from 0.5 ns to 2.5 ns, a rise time from 0.32 ns to 0.58 ns, and a pulse amplitude that is adjustable from 1.5 kV to 5 kV.展开更多
The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of ina...The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of inactivation.In this work,chicken meat and skin inoculated with meat-borne A.salmonicida isolates were subjected to IPL treatments under different conditions.The results showed that IPL had obvious bactericidal effect in the chicken skin and thickness groups when the treatment voltage and time were 7 V combined with 5 s.In addition,the lethality curves of A.salmonicida were fitted under IPL conditions of 3.5-7.5 V.The comparison of statistical parameters revealed that the Weibull model could best fit the mortality curves and could accurately predict the mortality dynamic of A.salmonicida grown on chicken skin.And further a secondary model between the scale factor b and the treatment voltage in Weibull model was established using linear equations,which determined that the secondary model could accurately predict the inactivation of A.salmonicida.This study provides a theoretical basis for future prediction models of Aeromonas,and also provides new ideas for sterilization approaches of meat-borne Aeromonas.展开更多
The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron moti...The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.展开更多
The guidance and control strategy for endoatmospheric kinetic interceptor controlled by lateral pulse thrusters was detailed.The pulse thruster control system was firstly proposed.The sample-and-hold approach was intr...The guidance and control strategy for endoatmospheric kinetic interceptor controlled by lateral pulse thrusters was detailed.The pulse thruster control system was firstly proposed.The sample-and-hold approach was introduced to design a novel lateral acceleration autopilot on the basis of traditional two-loop topology.Combined with proportional navigation guidance law and the novel autopilot,the overall ballistic trajectory was presented and examined.Simulation results show that the pulse thruster control strategy can greatly improve the control system response speed and the maximal acceleration capability for realizing kinetic kill interception.展开更多
We report on the results of numerical models of the(i)initial growth and(ii)steady state phases of atmospheric-pressure homogeneous dielectric barrier discharge in argon.We employ our new inhouse code called Py DBD,wh...We report on the results of numerical models of the(i)initial growth and(ii)steady state phases of atmospheric-pressure homogeneous dielectric barrier discharge in argon.We employ our new inhouse code called Py DBD,which solves continuity equations for both particles and energy,shows exceptional stability,is accelerated by adaptive time stepping and is openly available to the scientific community.Modeling argon plasma is numerically challenging due to the lower speeds of more inertial ions compared to more commonly modeled neon and helium,but its common use for plasma jets in medicine makes its modeling compelling.Py DBD is here applied to modeling two setups:(i)the exponential growth from natural electron-ion seeds(onset phase)until saturation is reached and(ii)the multiple current pulses that naturally appear during the steady state phase.We find that the time required for the onset phase,when the plasma density grows from 10^(9)m^(-3)to 10^(17)m^(-3),varies from 80μs at 4.5 k V down to a fewμs above 6.5 k V,for voltage frequency f=80 k Hz and gap width d_(g)=0.9 mm.At the steady state,our model reproduces two previously observed features of the current in dielectric barrier discharge reactors:(1)an oscillatory behavior associated to the capacitative character of the circuit and(2)several(N_(p))current pulses occurring every half sinusoidal cycle.We show that the oscillations are present during the exponential growth,while current pulses appear approaching the steady state.After each micro-discharge,the gas voltage decreases abruptly and charged particles rapidly accumulate at the dielectric boundaries,causing avalanches of charged particles near the reactor boundaries.Finally,we run a parametric study finding that N_(p)increases linearly with voltage amplitude V_(amp),is inversely proportional to dielectric gap d_(g)and decreases when voltage frequency f increases.The code developed for this publication is freely available at the address https://github.com/gabersyd/PyDBD.展开更多
基金financially supported by the National Natural Science Foundation of China(Granted No.U1760204,51504048)the National Key Research Program of China(Granted No.2017YFB0701800)
文摘Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.
基金supported by National Natural Science Foundation of China(Nos.11135002,11075069,91026021 and 11075068)Fundamental Research Funds for the Central Universities of China(lzujbky-2014-13,lzujbky-2014-14,lzujbky-2014-10 and lzujbky-2014-15)
文摘In this paper, an experimental study of collinear geometry double-pulse femtosecond LIBS was performed on a Ni sample in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with the single-pulse case. Doublepulse LIBS spectra show a very clear enhancement when an optimum inter-pulse delay was used. The influences of the inter-pulse delay between two pulses on the LIBS signal intensity, electron temperature and density were investigated. It is most remarkable that the evolutions of signal enhancement and electron temperature versus the inter-pulse delay showed the same behavior and revealed two main regimes of interaction. These results provide additional insight into the possible emission enhancement mechanisms in the double pulse configuration.
基金financially supported by the National Natural Science Foundation of China(Grant No.51320105003)the Australian Research Council Centre of Excellence for Design in Light Metals and,ARC Discovery Project DP140100702the Exo Met Project co-funded by the European Commission’s 7th Framework Programme(Contract FP7-NMP3-LA-2012-280421)
文摘Commercial pure Al can be refined by Pulsed Magneto-Oscillation(PMO) treatment applied via a plate induction coil above the top surface of the melt. The proportion of the equiaxed zone area increases with decreasing Height to Diameter(H/D) ratios from 3.5 to1.8 and further to 1.0. Meanwhile, it increases and then decreases with increasing peak current for the three kinds of ingots with H/D ratios of 3.5, 1.8 and 1.0, respectively. However, when the H/D ratio decreases to 0.44, the area proportion of equiaxed zone can reach the maximum value with a lower peak current. FEA software simulation indicates that smaller H/D ratio results in larger current density, electromagnetic force and convection on the top surface of the melt, favoring nucleation and subsequent grain formation. Through evaluating Joule heating effect by PMO, it was found that the proper amount of Joule heating benefits grain refinement. Excessive Joule heating can reduce the size of the equiaxed zone and change the growth morphology of the grains.
文摘Photoplethysmogram(PPG)is a noninvasive method for detecting human cardiovascular pulse wave using optical technology.The PPG containing a lot of physiological information is from the MIMIC database.This paper proposes a combinatorial method of ensemble empirical mode decomposition(EEMD),cepstrum,fast Fourier transform(FFT)and zero-crossing detection to improve the robustness of the estimation of pulse rate(PR),heart rate(HR)and respiratory rate(RR)from the PPG.First,the PPG signal was decomposed into finite intrinsic mode functions(IMF)by EEMD.Because of its adaptive filtering property,the different signals were reconstructed using different IMFs when estimating different physiological parameters.Second,the PR was obtained by zero-crossing detection after rejecting low frequency IMFs containing artifacts.Third,IMFs with frequency between 1.00 Hz to 1.67 Hz(60 beats/min to 100 beats/min)were selected for estimating HR.Then,the frequency band that reflects the heart activity was analyzed by the cepstrum method.Finally,the respiratory signal can be extracted from PPG signal by IMFs with frequency between 0.05 Hz to 0.75 Hz(3 breahts/min to 45 breaths/min).Then the spectrum of signal was obtained by FFT analysis and the RR was estimated by detecting the maximum frequency peak.The algorithm has been tested on MIMIC database obtained from 53 adults.The experiment results show that the physiological parameters extracted by this integrated signal processing method are consistent with the real physiological parameters.And the computation load of this method is small and the precision is high(not larger than 1.17%in error).
文摘In this paper, a calculation model for the breakdown time delay and jitter of gas switches under hundred-nanosecond pulses is proposed and applied in a self-triggered pre-ionized switch. The effects of injection time of pre-ionization, pulse rise time, and the pre-ionization jitter are discussed and verified through experiments. It indicates that the pre-ionization should be injected when the electric field is high enough in the gap, injection after 80% peak-time can ensure its effectiveness.Then the statistical time delay jitter will be determined by the pre-ionization jitter, which is an intrinsic restriction of the self-triggered switch. However, when the changing rate of the pulsed electric field exceeds a certain value, the breakdown time delay jitter can be partly offset in the formative stage because the formative time delay has an exponential relationship with the electric field. Therefore, lower time jitter can be obtained under pulses with a shorter pulse rise time. In general, the results of the calculation model agree with the experimental results, and the experimental parameters which lead to a low jitter can also be used as a reference.
文摘Heterotopic ossification (HO) may cause pain, and can lead to loss of hip motion after total hip arthroplasty (THA). There is evidence that pulsed lavage may lower the incidence of HO formation. We assessed the effect of pulsed lavage on the incidence of HO in 87 male patients after THA. All patients received an uncemented THA through a posterolateral approach. 39 patients were treated with pulsed lavage (index group) and 48 males were treated without pulsed lavage (historical control group, matched on aetiology, gender, surgical approach and type of prosthesis). Both groups followed the same postoperative treatment regimen. HO severity was scored in both groups according to the Brooker classification by three blinded orthopaedic surgeons one year postoperatively. Good inter-observer agreement (Kappa 0.7) for scoring HO was found. The incidence of HO (51%) in the index group did not differ significantly (p = 0.53) from the control group (58%). However, the incidence of clinically relevant HO (Brooker grades 3 and 4) was significantly lower (p = 0.04) in the index group (3%) as compared to the control group (17%). These results suggest a beneficial effect of pulsed lavage on the incidence of severe heterotopic ossification after cementless THA in male patients.
基金Agency for Science,Technology and Research(A^*STAR)Singapore through the X-ray Photonics Programme(1426500052)A^*STAR Graduate Academy through the A^*STAR Graduate Scholarship.
文摘We report the generation of high energy 2μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system.The all-fiber configuration was realized by a flexible large-mode area photonic crystal fiber(LMA-PCF).The amplifier output is a linearly-polarized 1.5 ns,100 kHz pulse train with a pulse energy of up to 250μJ.Pulse compression was achieved with(2+2)-pass chirped volume Bragg grating(CVBG)to obtain a 2.8 ps pulse width with a total pulse energy of 46μJ.The overall system compactness was enabled by the all-fiber amplifier design and the multi-pass CVBG-based compressor.The laser output was then used to demonstrate high-speed direct-writing capability on a temperature-sensitive biomaterial to change its topography(i.e.fabricate microchannels,foams and pores).The topographical modifications of biomaterials are known to influence cell behavior and fate which is potentially useful in many cell and tissue engineering applications.
文摘A self-built double-pulse remote Laser-Induced Breakdown Spectroscopy system in a collinear configuration was used to?investigate?the magnesium?alloys. The enhancement of the intensity was observed, about 4.7 times compared with single pulse LIBS. The peak intensities of line Y II 366.4 nm and Zr I 468.7 nm were used in the calibration curves, and the correlation coefficients were 0.9998 and 0.9547 respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501358)the Fundamental Research Funds for the Central Universities,China
文摘The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50707032 and 50437020)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-YW-339)the State Key Laboratory of Controland Simulation of Power System and Generation Equipment in Tsinghua University (Grant No. SKLD09KZ05)
文摘In order to perform data acquisition and avoid unwanted over-current damage to the power supply, a convenient and real-time method of experimentally investigating repetitive nanosecond-pulse breakdown in polymer dielectric samples is presented. The measurement-acquisition and control system not only records breakdown voltage and current, and time-to-breakdown duration, but also provides a real-time power-off protection for the power supply. Furthermore, the number of applied pulses can be calculated by the product of the time-to-breakdown duration and repetition rate. When the measured time-to-breakdown duration error is taken into account, the repetition rate of applied nanosecond-pulses should be below 40kHz. In addition, some experimental data on repetitive nanosecond-pulse breakdown of polymer films are presented and discussed.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 50877039in part by the Tsinghua University Initiative Scientific Research Program under Grant No.20121087927(Corresponding author:Xinjie Yu).
文摘The pulsed power supply(PPS)is one important component in the electromagnetic launch system.The inductive PPSs have attracted researchers’attentions with the major advantages of high energy storage density(over the capacitive PPSs)as well as simple structure and easy control(over the rotating mechanical PPSs).As for the inductive PPSs,the circuit topology of the basic module will directly determine the comprehensive performance of the whole system.From the perspectives of working principles,strengths,weaknesses,and comprehensive performance,this paper presents a historical and technical review of the major circuit topologies for the inductive PPSs.
基金National Key Research and Development Program,Ministry of Science and Technology of China under Grant No.2022YFC3803004the National Natural Science Foundation of China under Grant No.51838004。
文摘In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified.
基金supported by the National Natural Science Foundation of China(52177217)。
文摘Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.
基金supported by the Key Research Program of the Chinese Academy of Sciences(grant number ZDRW-ZS-2021-1-2).
文摘Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.
基金supported by the National Key Laboratory Foundation of China (No.9140C530103110C5301)
文摘A sub-nanosecond pulse discharge tube is a gas discharge tube which can generate a rapid high-voltage pulse of kilo-volts in amplitude and sub-nanoseconds in width. In this paper, the sub-nanosecond pulse discharge tube and its working principles are described. Because of the phenomenon that the deformation process of the mercury film on the electrode surface lags behind the charging process, the mercury film deformation process affects the dynamic breakdown voltage of the tube directly. The deformation of the mercury film is observed microscopically, and the dynamic breakdown voltage of the tube is messured using an oscillograph. The results show that all the parameters in the charging process, such as charging resistance, charging capacitance and DC power supply, affect the dynamic breakdown voltage of the tube. Based on these studies, the output pulse amplitude can be controlled continuously and individually by adjusting the power supply voltage. When the DC power supply is adjusted from 7 kV to 10 kV, the dynamic breakdown voltage ranges from 6.5 kV to 10 kV. According to our research, a kind of sub-nanosecond pulse generator is made, with a pulse width ranging from 0.5 ns to 2.5 ns, a rise time from 0.32 ns to 0.58 ns, and a pulse amplitude that is adjustable from 1.5 kV to 5 kV.
基金supported by projects funded by grants from the Natural Science Foundation of Jiangsu Province in China(BK20221515)the National Natural Science Foundation of China(32172266)the Changzhou Science and Technology Support Program(CE20222002)。
文摘The aim of this study was to evaluate the factors influencing the inactivation effect of intense pulsed light(IPL)on Aeromonas salmonicida grown on chicken meat and skin,and to further develop prediction models of inactivation.In this work,chicken meat and skin inoculated with meat-borne A.salmonicida isolates were subjected to IPL treatments under different conditions.The results showed that IPL had obvious bactericidal effect in the chicken skin and thickness groups when the treatment voltage and time were 7 V combined with 5 s.In addition,the lethality curves of A.salmonicida were fitted under IPL conditions of 3.5-7.5 V.The comparison of statistical parameters revealed that the Weibull model could best fit the mortality curves and could accurately predict the mortality dynamic of A.salmonicida grown on chicken skin.And further a secondary model between the scale factor b and the treatment voltage in Weibull model was established using linear equations,which determined that the secondary model could accurately predict the inactivation of A.salmonicida.This study provides a theoretical basis for future prediction models of Aeromonas,and also provides new ideas for sterilization approaches of meat-borne Aeromonas.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11127901,60921004,11134010,11222439,11227902,and 61108012)the National Basic Research Program of China(Grant No.2011CB808103)
文摘The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.
基金Supported by the National Natural Science Foundation of China(61172182)
文摘The guidance and control strategy for endoatmospheric kinetic interceptor controlled by lateral pulse thrusters was detailed.The pulse thruster control system was firstly proposed.The sample-and-hold approach was introduced to design a novel lateral acceleration autopilot on the basis of traditional two-loop topology.Combined with proportional navigation guidance law and the novel autopilot,the overall ballistic trajectory was presented and examined.Simulation results show that the pulse thruster control strategy can greatly improve the control system response speed and the maximal acceleration capability for realizing kinetic kill interception.
基金funded by the Louisiana Board of Regents,project LEQSF(2014-17)-RD-A-14。
文摘We report on the results of numerical models of the(i)initial growth and(ii)steady state phases of atmospheric-pressure homogeneous dielectric barrier discharge in argon.We employ our new inhouse code called Py DBD,which solves continuity equations for both particles and energy,shows exceptional stability,is accelerated by adaptive time stepping and is openly available to the scientific community.Modeling argon plasma is numerically challenging due to the lower speeds of more inertial ions compared to more commonly modeled neon and helium,but its common use for plasma jets in medicine makes its modeling compelling.Py DBD is here applied to modeling two setups:(i)the exponential growth from natural electron-ion seeds(onset phase)until saturation is reached and(ii)the multiple current pulses that naturally appear during the steady state phase.We find that the time required for the onset phase,when the plasma density grows from 10^(9)m^(-3)to 10^(17)m^(-3),varies from 80μs at 4.5 k V down to a fewμs above 6.5 k V,for voltage frequency f=80 k Hz and gap width d_(g)=0.9 mm.At the steady state,our model reproduces two previously observed features of the current in dielectric barrier discharge reactors:(1)an oscillatory behavior associated to the capacitative character of the circuit and(2)several(N_(p))current pulses occurring every half sinusoidal cycle.We show that the oscillations are present during the exponential growth,while current pulses appear approaching the steady state.After each micro-discharge,the gas voltage decreases abruptly and charged particles rapidly accumulate at the dielectric boundaries,causing avalanches of charged particles near the reactor boundaries.Finally,we run a parametric study finding that N_(p)increases linearly with voltage amplitude V_(amp),is inversely proportional to dielectric gap d_(g)and decreases when voltage frequency f increases.The code developed for this publication is freely available at the address https://github.com/gabersyd/PyDBD.