BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs ...BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.展开更多
Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for power...Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled by pulse amplitude modulation and output voltage spectrum of the converter with pulse width modulation have similar properties. Spectrum of signals sampled by pulse amplitude modulation contains a harmonic of frequency equal to the frequency of the modulating signal and the harmonics of frequencies equal to the sum of frequency of the modulating signal and multiples of the sampling frequency. The output voltage spectrum of the converter with bipolar pulse width modulation contains harmonic of frequency equal to the frequency of the modulating signal and harmonics of frequencies equal to sum of the frequency of the modulating signal and multiples of the frequency of the carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples of the frequency of the modulating signal and the multiples of the carrier signal. The comparison analysis was carried out for the harmonics of the output voltage of the converter with bipolar pulse width modulation in time domain. The dependency of the amplitudes and frequency spectrum on the wave forms of the carrier signal and modulating signal was shown. Similarity of the output voltage spectrum of the converter and signal spectrum sampled by the pulse width modulation was also shown. Key words: Output voltage converter with bipolar pulse width modulation, spectral analysis, Fourier series, carrier signal, reference signal.展开更多
文摘BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.
文摘Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled by pulse amplitude modulation and output voltage spectrum of the converter with pulse width modulation have similar properties. Spectrum of signals sampled by pulse amplitude modulation contains a harmonic of frequency equal to the frequency of the modulating signal and the harmonics of frequencies equal to the sum of frequency of the modulating signal and multiples of the sampling frequency. The output voltage spectrum of the converter with bipolar pulse width modulation contains harmonic of frequency equal to the frequency of the modulating signal and harmonics of frequencies equal to sum of the frequency of the modulating signal and multiples of the frequency of the carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples of the frequency of the modulating signal and the multiples of the carrier signal. The comparison analysis was carried out for the harmonics of the output voltage of the converter with bipolar pulse width modulation in time domain. The dependency of the amplitudes and frequency spectrum on the wave forms of the carrier signal and modulating signal was shown. Similarity of the output voltage spectrum of the converter and signal spectrum sampled by the pulse width modulation was also shown. Key words: Output voltage converter with bipolar pulse width modulation, spectral analysis, Fourier series, carrier signal, reference signal.