This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of ...This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.展开更多
With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more serio...With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.展开更多
BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs ...BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.展开更多
Total harmonic distortion (THD) is one of the key technical indexes of inverter output voltage. Optimization o f switching points and filter parameters could ensure the switching-point-preset sinusoidal pulse width mo...Total harmonic distortion (THD) is one of the key technical indexes of inverter output voltage. Optimization o f switching points and filter parameters could ensure the switching-point-preset sinusoidal pulse width modulation (SPWM) inverters with low harmonyic content in theory.The THD value would be increased by switching time delay of power devices and control circuit. A new control coecuit with delay time compensation is presented in this paper. With this control scheme, the output of the inverter could be basically identified with the theory given.Test results of experimental circuit verify that the control circuit presented in this paper is feasible. The THD of the inverter output voltage could be reduced to a certain extent by this method.展开更多
Resonant dc link inverter is a zero voltage switching inverter.This paper proposes a new cascade resonant dc link inverter that consists of two power converter units,a rugged resonant dc link and an inverter bridge.A ...Resonant dc link inverter is a zero voltage switching inverter.This paper proposes a new cascade resonant dc link inverter that consists of two power converter units,a rugged resonant dc link and an inverter bridge.A detailed analysis of the soft switching process in the rugged resonant dc link and the realization of pulse width modulation (PWM) control strategy in the inverter bridge are presented in the paper. The operation modes, the input and output features and the interface between the rugged resonant dc link and the inverter bridge are also discussed. The relationship between the circuit features and the parameters is deduced, which provides a theoretical base for the circuit design. The analysis results show that the rugged resonant dc link can be regulated by open-loop control and the control of the rugged resonant dc link is independent of that of the inverter bridge, which makes the inverter control easy and realizable.The circuit of the inverter is simulated with a standard circuit simulation program PSPICE. The simulation results are corresponding to the predicted ones of the circuit analysis.展开更多
In the traditional three-level space vector pulse width modulation(SVPWM)algorithm,the sector judgment is computationallycomplex since the sector is divided into triangles and hexagons.In addition,the switching freque...In the traditional three-level space vector pulse width modulation(SVPWM)algorithm,the sector judgment is computationallycomplex since the sector is divided into triangles and hexagons.In addition,the switching frequency is high becausethe seven-segment switching sequence is adopted.For this reason,a new SVPWM control algorithm for three-level inverteris proposed,in which the sector judgment is simplified by dividing the sector into quasi hexagons?and the new four-segmentswitching sequence is adopted to reduce the switching frequency.Simulation results show that the total harmonic distortiongrows down with the switching frequency decreasing,moreover,the algorithm runtime is also decreased.展开更多
In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response w...In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.展开更多
The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme...The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.展开更多
In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter ...In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter are added to input circuit of the inverter.Single-phrase full-bridge inverter performs the function of converting direct current into alternating current(DC/AC).In the control circuit,single chip micyoco(SCM)AT89C2051 is used for main control chip to accomplish the hardware design of the control system.A given value of output frequency of the inverter is input in the way of coding.According to the output frequency code which is read,SCM AT89C2051 defined harmonic elimination PWM control data which will be selected.Through internal timing control,the switches are switched under this provision of PWM control data.Then the driving signals of the switches in the inverter are output from I/O of SCM AT89C2051 to realize harmonic elimination PWM control.The results show that adding Newton homotopic algorithm of harmonic elimination PWM control to corresponding software of the control system can make the quality of output voltage of the inverter higher and it will have broad application prospects.展开更多
Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascad...Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascaded full bridge inverter operation with dissimilar (unequal) DC Source and it is fired by using variable frequency pulse with modulation technique as a switching strategy. This pulse width modulation switching strategy has a newly adopted multicarrier single reference technique. The performance parameter factors like Form Factor (FF), Crest Factor (CF), Total Harmonic Distortion (THD) and fundamental RMS output voltage (V<sub>RMS</sub>) are estimated by using proposed asymmetrical three-phase cascading multilevel inverter for several modulation indices (0.8 - 1). The research study carries with MATLAB/SIMULINK based simulation and experimental results obtained using appropriate prototype (test board) to prove the viability of the proposed concept.展开更多
Multilevel inverters are gaining popularity in high power applications. This paper proposes a new ladder type structure of cascaded three-phase multilevel inverter with reduced number of power semiconductor devices wh...Multilevel inverters are gaining popularity in high power applications. This paper proposes a new ladder type structure of cascaded three-phase multilevel inverter with reduced number of power semiconductor devices which is used to drive the induction motor. The ultimate aim of the paper is to produce multiple output levels with minimum number of semiconductor devices. This paper uses only 11 switches along with 3 diodes and 4 asymmetrical sources to produce an output voltage of 21 levels. The modulation technique plays a major role in commutation of the switches. Here we implement the multicarrier level shifting pulse width modulation technique to produce the commutation signals for the inverter. The proposed multilevel inverter is used to drive the three-phase induction motor. The mathematical modeling of three-phase induction motor is done using Simulink. Furthermore the PI and fuzzy logic controllers are also used to produce the reference waveform of the level shifting technique which in turn produces the commutation signals of the proposed multilevel converter. The controllers are used to control the speed of the induction motor. The effectiveness of the proposed system is proved with the help of simulation. The simulation is performed in MATLAB/Simulink. From the simulation results, it shows that the proposed multilevel inverter works properly to generate the multilevel output waveform with minimum number of semiconductor devices. The PI and fuzzy logic controller performances are evaluated using the results which indicate that with the help of controllers the harmonics has been reduced and the speed control of induction motor is achieved under different loading conditions.展开更多
When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse wi...When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse width modulation(GSDPWM) method of threephase inverters to effectively attenuate the high frequency current harmonics at PCC. Firstly, the basic principle and the realization method of GSDPWM for three-phase inverters are explained, which can be employed for different modulation types. Then a fast calculation method,which can equally derive the minimized total harmonic distortion(THD) of total current, is proposed to release the calculation burden. Finally, MATLAB simulations and experimental results are presented to verify the performance of GSDPWM.展开更多
Multilevel inverters are preferred solutions for photovoltaic(PV)applications because of lower total harmonic distortion(THD),lower switching stress and lower electromagnetic interference(EMI).In order to reduce the l...Multilevel inverters are preferred solutions for photovoltaic(PV)applications because of lower total harmonic distortion(THD),lower switching stress and lower electromagnetic interference(EMI).In order to reduce the leakage current in the single-phase low-power PV inverters,a five-level transformer-less inverter is proposed in this paper.A total of eleven switches are required,while six of them only withstand a quarter of the dc-bus voltage,so the costs for them are low.Another four switches are turned on or off at the power line cycle,the switching losses for them are ignored.In addition,the flying-capacitors(FCs)voltages are only a quarter of the dc-bus voltage,and they are balanced at the switching frequency,which further reduces the system investment.The experimental results based on a 1 kW prototype show that the proposed modulation strategy can balance the FCs voltages at Vdc/4 very well.And the leakage current can be reduced to about 27 mA under both active and reactive operations,which satisfies the VDE 0126-1-1 standard.展开更多
In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection sho...In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection short circuit at two switches any of the same phase leg in the inverter bridge and to achieve optimal harmonic of current, voltage. This paper presents two different control methods (CM) for ZSI. The aim of this study to compare between two modulation methods, there are modi?ed space vector pulse width modulation method (MSVM) and the simple boost control (SBC) about the unique harmonic performance features, the total average and peak switching device power of the inverter system. In addition, this paper also analyzes about the ability exceed modulation index in linear region of two CM using MATLAB/Simulink.展开更多
In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. T...In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.展开更多
文摘This work presents an implementation of an innovative single phase multilevel inverter using capacitors with reduced switches. The proposed Capacitor pattern H-bridge Multilevel Inverter (CPHMLI) topology consists of a proper number of Capacitor connected with switches and power sources. The advanced switching control supplied by Pulse Width Modulation (PDPWM) to attain mixed staircase switching state. The charging and discharging mode are achieved by calculating the voltage error at the load. Furthermore, to accomplish the higher voltage levels at the output with less number of semiconductors switches and simple commutation designed using CPHMLI topology. To prove the performance and effectiveness of the proposed approach, a set of experiments performed under various load conditions using MATLAB tool.
基金Supported by Application Technology Research and Development of Harbin City(2017RAXXJ075)。
文摘With the acceleration of agricultural electrification,a lot of nonlinear and shock loads appear in the rural power grid,and the resulting harmonic and reactive currents pollute the rural power grid more and more seriously.To solve the above problem,three-level neutral point clamped(NPC)inverters have been widely used,but their development is greatly restricted by the defect of neutral point voltage imbalance.In this paper,an improved virtual space vector pulse width modulation(VSVPWM)was proposed.Firstly,the mathematical models of various space vectors were established,and the influence of various space vectors on neutral point voltage was analyzed.The sum of the vector current at the neutral point was zero and the voltage control at the neutral point was completed by.introducing the time offset into different switching times of the redundant small vector.This method was simple in design and avoided the redundant calculation of the traditional VSVPWM method and tedious switch sequence design.This balancing control strategy could greatly reduce the influence of virtual vectors on neutral point voltage and effectively control the low-frequency oscillation of neutral point voltage.The validity of the method was verified by establishing a matlab simulation model.
文摘BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.
文摘Total harmonic distortion (THD) is one of the key technical indexes of inverter output voltage. Optimization o f switching points and filter parameters could ensure the switching-point-preset sinusoidal pulse width modulation (SPWM) inverters with low harmonyic content in theory.The THD value would be increased by switching time delay of power devices and control circuit. A new control coecuit with delay time compensation is presented in this paper. With this control scheme, the output of the inverter could be basically identified with the theory given.Test results of experimental circuit verify that the control circuit presented in this paper is feasible. The THD of the inverter output voltage could be reduced to a certain extent by this method.
文摘Resonant dc link inverter is a zero voltage switching inverter.This paper proposes a new cascade resonant dc link inverter that consists of two power converter units,a rugged resonant dc link and an inverter bridge.A detailed analysis of the soft switching process in the rugged resonant dc link and the realization of pulse width modulation (PWM) control strategy in the inverter bridge are presented in the paper. The operation modes, the input and output features and the interface between the rugged resonant dc link and the inverter bridge are also discussed. The relationship between the circuit features and the parameters is deduced, which provides a theoretical base for the circuit design. The analysis results show that the rugged resonant dc link can be regulated by open-loop control and the control of the rugged resonant dc link is independent of that of the inverter bridge, which makes the inverter control easy and realizable.The circuit of the inverter is simulated with a standard circuit simulation program PSPICE. The simulation results are corresponding to the predicted ones of the circuit analysis.
基金National Natural Science Foundation of China(No.61261029)
文摘In the traditional three-level space vector pulse width modulation(SVPWM)algorithm,the sector judgment is computationallycomplex since the sector is divided into triangles and hexagons.In addition,the switching frequency is high becausethe seven-segment switching sequence is adopted.For this reason,a new SVPWM control algorithm for three-level inverteris proposed,in which the sector judgment is simplified by dividing the sector into quasi hexagons?and the new four-segmentswitching sequence is adopted to reduce the switching frequency.Simulation results show that the total harmonic distortiongrows down with the switching frequency decreasing,moreover,the algorithm runtime is also decreased.
基金supported by the Shanghai Education Committee Scientific Research Subsidization (Grant No.05AZ30)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060280018)
文摘In this paper, a vector regulating principle of the phase and amplitude control PAC method for three-phase grid-connected inverters is presented.To solve the problem of heavy inrush current and slow dynamic response when system starts up, the starting voltage prediction control and the current feed-forward control are proposed and used, which improve the dynamic performance of the system in the PAC.The experimental results carried out on a three-phase grid-connected inverter proved the validity of the proposed method.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.
文摘In order to output sine wave with small degree of distortion and improve stability,a type of inverter power supply is designed based on harmonic elimination pulse-width modulation(PWM)control.The rectifier and filter are added to input circuit of the inverter.Single-phrase full-bridge inverter performs the function of converting direct current into alternating current(DC/AC).In the control circuit,single chip micyoco(SCM)AT89C2051 is used for main control chip to accomplish the hardware design of the control system.A given value of output frequency of the inverter is input in the way of coding.According to the output frequency code which is read,SCM AT89C2051 defined harmonic elimination PWM control data which will be selected.Through internal timing control,the switches are switched under this provision of PWM control data.Then the driving signals of the switches in the inverter are output from I/O of SCM AT89C2051 to realize harmonic elimination PWM control.The results show that adding Newton homotopic algorithm of harmonic elimination PWM control to corresponding software of the control system can make the quality of output voltage of the inverter higher and it will have broad application prospects.
文摘Asymmetric three-phase cascading Trinary-DC source Multilevel Inverter which can achieve reduced harmonics and superior root mean square (RMS) values of the output voltage is proposed. This topology can achieve cascaded full bridge inverter operation with dissimilar (unequal) DC Source and it is fired by using variable frequency pulse with modulation technique as a switching strategy. This pulse width modulation switching strategy has a newly adopted multicarrier single reference technique. The performance parameter factors like Form Factor (FF), Crest Factor (CF), Total Harmonic Distortion (THD) and fundamental RMS output voltage (V<sub>RMS</sub>) are estimated by using proposed asymmetrical three-phase cascading multilevel inverter for several modulation indices (0.8 - 1). The research study carries with MATLAB/SIMULINK based simulation and experimental results obtained using appropriate prototype (test board) to prove the viability of the proposed concept.
文摘Multilevel inverters are gaining popularity in high power applications. This paper proposes a new ladder type structure of cascaded three-phase multilevel inverter with reduced number of power semiconductor devices which is used to drive the induction motor. The ultimate aim of the paper is to produce multiple output levels with minimum number of semiconductor devices. This paper uses only 11 switches along with 3 diodes and 4 asymmetrical sources to produce an output voltage of 21 levels. The modulation technique plays a major role in commutation of the switches. Here we implement the multicarrier level shifting pulse width modulation technique to produce the commutation signals for the inverter. The proposed multilevel inverter is used to drive the three-phase induction motor. The mathematical modeling of three-phase induction motor is done using Simulink. Furthermore the PI and fuzzy logic controllers are also used to produce the reference waveform of the level shifting technique which in turn produces the commutation signals of the proposed multilevel converter. The controllers are used to control the speed of the induction motor. The effectiveness of the proposed system is proved with the help of simulation. The simulation is performed in MATLAB/Simulink. From the simulation results, it shows that the proposed multilevel inverter works properly to generate the multilevel output waveform with minimum number of semiconductor devices. The PI and fuzzy logic controller performances are evaluated using the results which indicate that with the help of controllers the harmonics has been reduced and the speed control of induction motor is achieved under different loading conditions.
文摘When multiple distributed converters are integrated, the high frequency harmonics will randomly accumulate at the point of common coupling(PCC). This paper proposes a new fast global synchronous discontinuous pulse width modulation(GSDPWM) method of threephase inverters to effectively attenuate the high frequency current harmonics at PCC. Firstly, the basic principle and the realization method of GSDPWM for three-phase inverters are explained, which can be employed for different modulation types. Then a fast calculation method,which can equally derive the minimized total harmonic distortion(THD) of total current, is proposed to release the calculation burden. Finally, MATLAB simulations and experimental results are presented to verify the performance of GSDPWM.
基金the National Natural Science Foundation of China Under Grant 51977069the Innovative Talents of“High-Level Talent Gathering Project”of Hunan Province,China Under Grant 2018RS3048+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China Under Grant 2020JJ2007the First Key Research and Talents Preprogram of Changsha,Hunan Province,China Under Grant kq2004020.
文摘Multilevel inverters are preferred solutions for photovoltaic(PV)applications because of lower total harmonic distortion(THD),lower switching stress and lower electromagnetic interference(EMI).In order to reduce the leakage current in the single-phase low-power PV inverters,a five-level transformer-less inverter is proposed in this paper.A total of eleven switches are required,while six of them only withstand a quarter of the dc-bus voltage,so the costs for them are low.Another four switches are turned on or off at the power line cycle,the switching losses for them are ignored.In addition,the flying-capacitors(FCs)voltages are only a quarter of the dc-bus voltage,and they are balanced at the switching frequency,which further reduces the system investment.The experimental results based on a 1 kW prototype show that the proposed modulation strategy can balance the FCs voltages at Vdc/4 very well.And the leakage current can be reduced to about 27 mA under both active and reactive operations,which satisfies the VDE 0126-1-1 standard.
文摘In recent years, Z-source inverters (ZSI) have been proposed as an replacement power conversion concept which it has both voltage buck and boost abilities. In addition, ZSI doesn’t require dead-time to protection short circuit at two switches any of the same phase leg in the inverter bridge and to achieve optimal harmonic of current, voltage. This paper presents two different control methods (CM) for ZSI. The aim of this study to compare between two modulation methods, there are modi?ed space vector pulse width modulation method (MSVM) and the simple boost control (SBC) about the unique harmonic performance features, the total average and peak switching device power of the inverter system. In addition, this paper also analyzes about the ability exceed modulation index in linear region of two CM using MATLAB/Simulink.
基金supported by Delta Power Electronic Science and Education Development in 2007 (Grant No.DRES2007002)
文摘In wind power generation system the grid-connected inverter is an important section for energy conversion and transmission, of which the performance has a direct influence on the entire wind power generation system. The mathematical model of the grid-connected inverter is deduced firstly. Then, the space vector pulse width modulation (SVPWM) is analyzed. The power factor can be controlled close to unity, leading or lagging, which is realized based on H-type current controller and grid voltage vector-oriented control. The control strategy is verified by the simulation and experimental results with a good sinusoidal current, a small harmonic component and a fast dynamic response.