该文以三相电压型脉宽调制(pulse width modulation,PWM)整流器为研究对象,提出一种基于新型开关表的直接功率控制(direct power control,DPC)策略。首先,根据两相旋转dq坐标系下整流器数学模型计算开关矢量对有功功率和无功功率的控制...该文以三相电压型脉宽调制(pulse width modulation,PWM)整流器为研究对象,提出一种基于新型开关表的直接功率控制(direct power control,DPC)策略。首先,根据两相旋转dq坐标系下整流器数学模型计算开关矢量对有功功率和无功功率的控制幅度,并归一化处理进行定量分析,以此为基础将传统DPC的12扇区重新划分为24扇区。然后,设计有功功率差值区间判断器,根据其输出值Cp和有功功率与无功功率滞环比较器的输出值Sp、Sq,选择当前扇区最佳开关矢量构造新型开关表,实现对有功功率的精确控制。仿真对比表明,该新型开关表不仅克服传统开关表对无功功率控制能力差的缺点,而且改善网侧电流总谐波失真,降低输出直流电压波动和有功功率与无功功率脉动。最后,搭建一台800W三相电压型PWM整流器样机,通过对比实验验证所提控制策略的正确性和有效性。展开更多
BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs ...BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.展开更多
文摘该文以三相电压型脉宽调制(pulse width modulation,PWM)整流器为研究对象,提出一种基于新型开关表的直接功率控制(direct power control,DPC)策略。首先,根据两相旋转dq坐标系下整流器数学模型计算开关矢量对有功功率和无功功率的控制幅度,并归一化处理进行定量分析,以此为基础将传统DPC的12扇区重新划分为24扇区。然后,设计有功功率差值区间判断器,根据其输出值Cp和有功功率与无功功率滞环比较器的输出值Sp、Sq,选择当前扇区最佳开关矢量构造新型开关表,实现对有功功率的精确控制。仿真对比表明,该新型开关表不仅克服传统开关表对无功功率控制能力差的缺点,而且改善网侧电流总谐波失真,降低输出直流电压波动和有功功率与无功功率脉动。最后,搭建一台800W三相电压型PWM整流器样机,通过对比实验验证所提控制策略的正确性和有效性。
文摘BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.