A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft swi...A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.展开更多
Saturation of peripheral oxygen (SpO2) is one of the most important parameters of vital signs. Pulse oximeter based on near-infrared spectroscopy is commonly used as a non-invasive method to measure SpO2 yl. Current...Saturation of peripheral oxygen (SpO2) is one of the most important parameters of vital signs. Pulse oximeter based on near-infrared spectroscopy is commonly used as a non-invasive method to measure SpO2 yl. Currently, medical device manufacturers as well as metrology measurement agencies in China usually use pulse oximeter simulator as the commonly accepted functional calibration equipment for pulse oximeters. So far, no experimental protocol or devices can be used to test the accuracy and reliability of a pulse oximeter simulator. Therefore, a set of new metrology apparatus with the name of calibration device for pulse oximeter simulator have been designed in order to make a traceable system for the calibration or verification of pulse oximeter simulators. The principles and some research methods of this calibration device for pulse oximeter simulator will be discussed in this paper. Besides that, many experiments have been applied in order to guarantee the accuracy as well as traceability of this set of device.展开更多
We theoretically investigate high-order harmonic generation(HHG) from a helium ion model in a two-color laser field,which is synthesized by a fundamental pulse and its second harmonic pulse.It is shown that a superc...We theoretically investigate high-order harmonic generation(HHG) from a helium ion model in a two-color laser field,which is synthesized by a fundamental pulse and its second harmonic pulse.It is shown that a supercontinuum spectrum can be generated in the two-color field.However,the spectral intensity is very low,limiting the application of the generated attosecond(as) pulse.By adding a static electric field to the synthesized two-color field,not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased,but also the quantum paths of the HHG can be significantly modulated.As a result,the extension and enhancement of the supercontinuum spectrum are achieved,producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV.In particular,we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation.展开更多
We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It i...We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It is shown that a supercontinuum can be produced using the multicycle two-color chirped field. However, the supercontinuum reveals a strong modulation structure, which is not good for the generation of an isolated attosecond pulse. By adding a static electric field to the multicycle two-color chirped field, not only the harmonic cutoff is extended remarkably, but also the quantum paths of the high-order harmonic generation (HHG) are modified significantly. As a result, both the extension of the supercontinuum and the selection of a single quantum path are achieved, producing an isolated 23-as pulse with a bandwidth of about 170.6 eV. Furthermore, the influences of the laser intensities on the supercontinuum and isolated attosecond pulse generation are investigated.展开更多
The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not inves...The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.展开更多
The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high ...The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high peak power.A time-reversed pulse-compression method in a single channel has high pulse compression gain.However,single channel pulse compression can only generate limited gain.This paper proposes a novel TR power-combination method in a multichannel TRC to obtain higher peak power based on TR pulse-compression theory.First,the TR power-combination model is given,and the crosstalk properties of the associated channel and the influence of the reversal performance are studied.Then,the power-combination performances for the TR pulse compression,such as combined signal to noise ratio(SNR)and combined compression gain,are analyzed by numerical simulation and experimental methods.The results show that the proposed method has obvious advantages over pulse-compression methods using a single channel cavity,and is more convenient for power combination.展开更多
The standardization of terms and definitions is fundamental to all activities in the domain of traditional Chinese medicine(TCM).For decades,definitions of TCM terminology relied on conventional verbal representations...The standardization of terms and definitions is fundamental to all activities in the domain of traditional Chinese medicine(TCM).For decades,definitions of TCM terminology relied on conventional verbal representations to differentiate between related concepts.However,the ancient Chinese is obscure and comprises a massive volume of information,making it difficult to convey the definition accurately in other languages.This article proposes a potential solution that the definition for pulse terminology can be supplemented by modern means of non-verbal representation,i.e.,using pulse waveform graphs and parameters to complete the definition of each pulse.A discussion of the challenges of obtaining reliable data is also included.展开更多
Background:The theory of pulse diagnosis is to assess the physiological condition of the human body using radial pulse.However,pulses can vary markedly from person to person.Further,pulse diagnosis is difficult to lea...Background:The theory of pulse diagnosis is to assess the physiological condition of the human body using radial pulse.However,pulses can vary markedly from person to person.Further,pulse diagnosis is difficult to learn and requires one-on-one teaching.Methods:To address this problem,we built a home-made pulse diagnoser and measured human pulses for studying the standardization of pulse diagnosis.Our pulse diagnoser was composed of a piezoelectric transducer,differential amplifier,data acquisition instrument,and a Matlab analysis program.The measured pulses were converted into electronic signals by a piezoelectric transducer and saved on a computer.The digitalized data were then refined and analyzed by fast Fourier transform for frequency analysis.Simulations were performed to assess the factors that affected the pulse,including phase shifts of reflected pulse waves (generate sub-peaks in pulses),inconsistent heart rates (deform pulse waves),the vessel stiffness (alter harmonic frequencies of the pulses),and the wave amplitudes (determined by the pulse strength).Results:By comparing a published report and our simulation findings,we characterized the pulse types and the effects of various factors,and then applied the findings to study actual pulses in patients.Three types of pulses were determined from the frequency spectrumchoppy pulse (Se mai) without apparent harmonic peaks,the harmonic frequencies of wiry pulse (Xian mai) that are non-integer multiples of the fundamental frequency,and surging pulse (Hong mai) that exhibit strong amplitudes in the spectrum of frequency.A normal pulse and a slippery pulse were differentiated by a phase shift,but not by assessing the frequency spectrum.Conclusion:These findings confirm that frequency domain analysis can avoid ambiguity arising in assessing the three types of pulses in the time domain.Further studies of other pulses in the frequency domain are required to develop a precise electronic pulse diagnoser.展开更多
Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic ...Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.展开更多
In this paper,we report a coherent beam combining(CBC)system that involves two thulium-doped all-polarization maintaining(PM)fiber chirped pulse amplifiers.Through phase-locking the two channels via a fiber stretcher ...In this paper,we report a coherent beam combining(CBC)system that involves two thulium-doped all-polarization maintaining(PM)fiber chirped pulse amplifiers.Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent(SPGD)algorithm,a maximum average power of 265 W is obtained,with a CBC efficiency of 81%and a residual phase error of λ/17.After de-chirping by a pair of diffraction gratings,the duration of the combined laser pulse is compressed to 690 fs.Taking into account the compression efficiency of 90%and the main peak energy proportion of 91%,the corresponding peak power is calculated to be 4 MW.The laser noise characteristics before and after CBC are examined,and the results indicate that the CBC would degrade the low frequency relative intensity noise(RIN),of which the integration is 1.74%in[100 Hz,2 MHz]at the maximum combined output power.In addition,the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated,showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.展开更多
We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum to...We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum total power of SC is 73 mW with 290-mW pump power from 40x microscope objective. The wavelength and power ranging in SC as well as the polarization states and waveguide modes of the visible light can be tuned by adjusting the input end of MF.In particular, white light has been observed. To our knowledge, this is the first report of tunable properties in SC generation process using microstructured fiber with combination core and random cladding.展开更多
In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loa...In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range.The impacting tests are carried out on the pressure-shear gas gun.The loading rate achieved is dK/dt~10~8 MPam^(1/2)s^(-1).With the elimination of influence of the specimen boundary,the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the 'momentum trap'technique.Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces.In the current study,some important phenomena have been observed.The special loading of the single pulse can bring about material damage around crack tip,and affect the material behavior,such as kinking and branching of the crack propagation.Failure mode transitions from mode Ⅰ to mode Ⅱ crack are observed under asymmetrical impact conditions.The mechanisms of the dynamic crack propagation are consistent with the damage failure model.展开更多
Ultrasonic pulse velocity (UPV) and rebound hammer (RH) tests are often used for assessing the quality of concrete and estimation of its compressive strength. Several parameters influence this property of concrete as ...Ultrasonic pulse velocity (UPV) and rebound hammer (RH) tests are often used for assessing the quality of concrete and estimation of its compressive strength. Several parameters influence this property of concrete as the type and size of aggregates, cement content, the implementation of concrete, etc. To account for these factors, both of the two tests are combined and their measurements are calibrated with the results of mechanical tests on cylindrical specimens cast on site and on cores taken from the existing structure in work progress at the new-city Massinissa El-Khroub Constantine in Algeria. In this study;the two tests cited above have been used to determine the concrete quality by applying regression analysis models between compressive strength of in situ concrete on existing structure and the nondestructive tests values, the combined method is used, equations are derived using statistical analysis (simple and multiple regression) to estimate compressive strength of concrete on site and the reliability of the technique for prediction of the strength is discussed for this case study.展开更多
文摘A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.
文摘Saturation of peripheral oxygen (SpO2) is one of the most important parameters of vital signs. Pulse oximeter based on near-infrared spectroscopy is commonly used as a non-invasive method to measure SpO2 yl. Currently, medical device manufacturers as well as metrology measurement agencies in China usually use pulse oximeter simulator as the commonly accepted functional calibration equipment for pulse oximeters. So far, no experimental protocol or devices can be used to test the accuracy and reliability of a pulse oximeter simulator. Therefore, a set of new metrology apparatus with the name of calibration device for pulse oximeter simulator have been designed in order to make a traceable system for the calibration or verification of pulse oximeter simulators. The principles and some research methods of this calibration device for pulse oximeter simulator will be discussed in this paper. Besides that, many experiments have been applied in order to guarantee the accuracy as well as traceability of this set of device.
基金Project supported by the Science Foundation of Baoji University of Arts and Sciences,China (Grant Nos. ZK10122,ZK11061,ZK11135,ZK11060,and ZK1032)the Education Committee Natural Science Foundation of Shaanxi Province,China (GrantNo. 2010JK405)
文摘We theoretically investigate high-order harmonic generation(HHG) from a helium ion model in a two-color laser field,which is synthesized by a fundamental pulse and its second harmonic pulse.It is shown that a supercontinuum spectrum can be generated in the two-color field.However,the spectral intensity is very low,limiting the application of the generated attosecond(as) pulse.By adding a static electric field to the synthesized two-color field,not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased,but also the quantum paths of the HHG can be significantly modulated.As a result,the extension and enhancement of the supercontinuum spectrum are achieved,producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV.In particular,we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation.
基金Project supported by the Science Foundation of Baoji University of Arts and Sciences,China(Grant No.ZK11061)the Natural Science Foundation of Education Committee of Shaanxi Province,China(Grant No.2013JK0637)
文摘We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It is shown that a supercontinuum can be produced using the multicycle two-color chirped field. However, the supercontinuum reveals a strong modulation structure, which is not good for the generation of an isolated attosecond pulse. By adding a static electric field to the multicycle two-color chirped field, not only the harmonic cutoff is extended remarkably, but also the quantum paths of the high-order harmonic generation (HHG) are modified significantly. As a result, both the extension of the supercontinuum and the selection of a single quantum path are achieved, producing an isolated 23-as pulse with a bandwidth of about 170.6 eV. Furthermore, the influences of the laser intensities on the supercontinuum and isolated attosecond pulse generation are investigated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404204 and 11447208the Key Project of Chinese Ministry of Education under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province under Grant No 2009021005
文摘The two-color circularly polarized pulses scheme was proposed to generate isolated attosecond pulses in our previous work [Phys. Rev. A 87 (2013) 043406], while the polarization of the attosecond pulse was not investigated. We show a supplementary explanation of this scheme and present another scheme to generate linear isolated attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. High-order harmonic generation and quantum path control are investigated to compare these two schemes. Both schemes can obtain supercontinuum spectra plateau from about 200eV to 550eV, which belong to the water window region. It is found that the latter scheme can clearly eliminate the short quantum path and extend the harmonic plateau. A linear isolated attosecond pulse with a duration of sub-6Oas can be generated by superposing a bandwidth of 70eV.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFC2203503)。
文摘The electromagnetic time-reversal(TR)technique has the characteristics of spatiotemporal focusing in a time-reversal cavity(TRC),which can be used for pulse compression,thus forming an electromagnetic pulse with high peak power.A time-reversed pulse-compression method in a single channel has high pulse compression gain.However,single channel pulse compression can only generate limited gain.This paper proposes a novel TR power-combination method in a multichannel TRC to obtain higher peak power based on TR pulse-compression theory.First,the TR power-combination model is given,and the crosstalk properties of the associated channel and the influence of the reversal performance are studied.Then,the power-combination performances for the TR pulse compression,such as combined signal to noise ratio(SNR)and combined compression gain,are analyzed by numerical simulation and experimental methods.The results show that the proposed method has obvious advantages over pulse-compression methods using a single channel cavity,and is more convenient for power combination.
基金This study was financed by the grants from the National Natural Science Foundation of China(No.82074332)Shanghai Science and Technology Commission(No.19441901100)Shanghai Key Laboratory of Health Identification and Assessment(NO.21DZ2271000).
文摘The standardization of terms and definitions is fundamental to all activities in the domain of traditional Chinese medicine(TCM).For decades,definitions of TCM terminology relied on conventional verbal representations to differentiate between related concepts.However,the ancient Chinese is obscure and comprises a massive volume of information,making it difficult to convey the definition accurately in other languages.This article proposes a potential solution that the definition for pulse terminology can be supplemented by modern means of non-verbal representation,i.e.,using pulse waveform graphs and parameters to complete the definition of each pulse.A discussion of the challenges of obtaining reliable data is also included.
基金the National Natural Science Foundation of China(81473597)China National Funds for Distinguished Young Scientists(30825046)Chang Jiang Scholars Program,and the 111 Project(B07007).
文摘Background:The theory of pulse diagnosis is to assess the physiological condition of the human body using radial pulse.However,pulses can vary markedly from person to person.Further,pulse diagnosis is difficult to learn and requires one-on-one teaching.Methods:To address this problem,we built a home-made pulse diagnoser and measured human pulses for studying the standardization of pulse diagnosis.Our pulse diagnoser was composed of a piezoelectric transducer,differential amplifier,data acquisition instrument,and a Matlab analysis program.The measured pulses were converted into electronic signals by a piezoelectric transducer and saved on a computer.The digitalized data were then refined and analyzed by fast Fourier transform for frequency analysis.Simulations were performed to assess the factors that affected the pulse,including phase shifts of reflected pulse waves (generate sub-peaks in pulses),inconsistent heart rates (deform pulse waves),the vessel stiffness (alter harmonic frequencies of the pulses),and the wave amplitudes (determined by the pulse strength).Results:By comparing a published report and our simulation findings,we characterized the pulse types and the effects of various factors,and then applied the findings to study actual pulses in patients.Three types of pulses were determined from the frequency spectrumchoppy pulse (Se mai) without apparent harmonic peaks,the harmonic frequencies of wiry pulse (Xian mai) that are non-integer multiples of the fundamental frequency,and surging pulse (Hong mai) that exhibit strong amplitudes in the spectrum of frequency.A normal pulse and a slippery pulse were differentiated by a phase shift,but not by assessing the frequency spectrum.Conclusion:These findings confirm that frequency domain analysis can avoid ambiguity arising in assessing the three types of pulses in the time domain.Further studies of other pulses in the frequency domain are required to develop a precise electronic pulse diagnoser.
文摘Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB3606000)in part by State Key Laboratory of Pulsed Power Laser Technology(No.SKL2020ZR02).
文摘In this paper,we report a coherent beam combining(CBC)system that involves two thulium-doped all-polarization maintaining(PM)fiber chirped pulse amplifiers.Through phase-locking the two channels via a fiber stretcher by using the stochastic parallel gradient descent(SPGD)algorithm,a maximum average power of 265 W is obtained,with a CBC efficiency of 81%and a residual phase error of λ/17.After de-chirping by a pair of diffraction gratings,the duration of the combined laser pulse is compressed to 690 fs.Taking into account the compression efficiency of 90%and the main peak energy proportion of 91%,the corresponding peak power is calculated to be 4 MW.The laser noise characteristics before and after CBC are examined,and the results indicate that the CBC would degrade the low frequency relative intensity noise(RIN),of which the integration is 1.74%in[100 Hz,2 MHz]at the maximum combined output power.In addition,the effects of the nonlinear spectrum broadening during chirped pulse amplification on the CBC efficiency are also investigated,showing that a higher extent of pulse stretching is effective in alleviating the spectrum broadening and realizing a higher output power with decent combining efficiency.
基金This work was supPorted by the Henan Cultivatlon Project for University Innovatlon Thlents.
文摘We demonstrate the generation of supercontinuum (SC) of over 1350 nm by injecting 790-nm, 15-fs, 74-MHz optical pulses into a 183-mm-long microstructured fiber with combination core and random cladding. The maximum total power of SC is 73 mW with 290-mW pump power from 40x microscope objective. The wavelength and power ranging in SC as well as the polarization states and waveguide modes of the visible light can be tuned by adjusting the input end of MF.In particular, white light has been observed. To our knowledge, this is the first report of tunable properties in SC generation process using microstructured fiber with combination core and random cladding.
基金The project supported by the National Natural Science Foundation of China(No.19672066 and 18981180-4)and the Key Project of Chinese Academy of Sciences(No.KJ951-1-20)
文摘In this paper,an improved plate impact experimental technique is presented for studying dynamic fracture mechanism of materials,under the conditions that the impacting loading is provided by a single pulse and the loading time is in the sub-microsecond range.The impacting tests are carried out on the pressure-shear gas gun.The loading rate achieved is dK/dt~10~8 MPam^(1/2)s^(-1).With the elimination of influence of the specimen boundary,the plane strain state of a semi-infinite crack in an infinite elastic plate is used to simulate the deformation fields of crack tip. The single pulses are obtained by using the 'momentum trap'technique.Therefore, the one-time actions of the single pulse are achieved by eradicating the stress waves reflected from the specimen boundary or diffracted from the crack surfaces.In the current study,some important phenomena have been observed.The special loading of the single pulse can bring about material damage around crack tip,and affect the material behavior,such as kinking and branching of the crack propagation.Failure mode transitions from mode Ⅰ to mode Ⅱ crack are observed under asymmetrical impact conditions.The mechanisms of the dynamic crack propagation are consistent with the damage failure model.
文摘Ultrasonic pulse velocity (UPV) and rebound hammer (RH) tests are often used for assessing the quality of concrete and estimation of its compressive strength. Several parameters influence this property of concrete as the type and size of aggregates, cement content, the implementation of concrete, etc. To account for these factors, both of the two tests are combined and their measurements are calibrated with the results of mechanical tests on cylindrical specimens cast on site and on cores taken from the existing structure in work progress at the new-city Massinissa El-Khroub Constantine in Algeria. In this study;the two tests cited above have been used to determine the concrete quality by applying regression analysis models between compressive strength of in situ concrete on existing structure and the nondestructive tests values, the combined method is used, equations are derived using statistical analysis (simple and multiple regression) to estimate compressive strength of concrete on site and the reliability of the technique for prediction of the strength is discussed for this case study.