Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamm...Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamma rays due to their unique penetration characteristic;thus,the development of n-γdiscrimination methods is especially crucial.In the present study,a novel n-γdiscrimination method is proposed that implements a pulse-coupled neural network for n-γdiscrimination.In addition,experiments were conducted on the pulse signals detected by an EJ299-33 plastic scintillator,which is especially suitable for n-γdiscrimination.The proposed method was compared to three other discrimination methods,including the back-propagation neural network(BPNN),the fractal spectrum method,and the charge comparison method,with respect to two aspects:(i)the figure of merit(FoM)and(ii)discrimination time.The experimental results showed that the pulse-coupled neural network(PCNN)has a 26.49%improvement in FoM-value compared to the charge comparison method,a72.80%improvement compared to the BPNN,a 66.24%improvement compared to the fractal spectrum method,and the second-fastest discrimination time of 2.22 s.In conclusion,the PCNN treats the input signal as a whole for analysis and processing,imparting it with an excellent antinoise effect and the ability to process the dynamic information contained in a pulse signal.展开更多
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)...To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.展开更多
Traditional image segmentation algorithms exhibit weak performance for plant cells which have complex structure. On the other hand, pulse-coupled neural network (PCNN) based on Eckhorn’s model of the cat visual corte...Traditional image segmentation algorithms exhibit weak performance for plant cells which have complex structure. On the other hand, pulse-coupled neural network (PCNN) based on Eckhorn’s model of the cat visual cortex should be suitable to the segmentation of plant cell image. But the present theories cannot explain the relationship between the parameters of PCNN mathematical model and the effect of segmentation. Satisfactory results usually require time-consuming selection of experimental parameters. Mean-while, in a proper, selected parametric model, the number of iteration determines the segmented effect evaluated by visual judgment, which decreases the efficiency of image segmentation. To avoid these flaws, this note proposes a new PCNN algorithm for automatically segmenting plant embryonic cell image based on the maximum entropy principle. The algorithm produces a desirable result. In addition, a model with proper parameters can automatically determine the number of iteration, avoid visual judgment,展开更多
基金supported by the Key Science and Technology projects of Leshan(No.19SZD117)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘Neutron and gamma ray pulse signal discrimination technology is an essential part of many modern scientific fields,such as biology,geology,radiation imaging,and nuclear medicine.Neutrons are always accompanied by gamma rays due to their unique penetration characteristic;thus,the development of n-γdiscrimination methods is especially crucial.In the present study,a novel n-γdiscrimination method is proposed that implements a pulse-coupled neural network for n-γdiscrimination.In addition,experiments were conducted on the pulse signals detected by an EJ299-33 plastic scintillator,which is especially suitable for n-γdiscrimination.The proposed method was compared to three other discrimination methods,including the back-propagation neural network(BPNN),the fractal spectrum method,and the charge comparison method,with respect to two aspects:(i)the figure of merit(FoM)and(ii)discrimination time.The experimental results showed that the pulse-coupled neural network(PCNN)has a 26.49%improvement in FoM-value compared to the charge comparison method,a72.80%improvement compared to the BPNN,a 66.24%improvement compared to the fractal spectrum method,and the second-fastest discrimination time of 2.22 s.In conclusion,the PCNN treats the input signal as a whole for analysis and processing,imparting it with an excellent antinoise effect and the ability to process the dynamic information contained in a pulse signal.
基金Supported by the National Natural Science Foundation of China(60905012,60572058)
文摘To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 39770375) the Natural Science Foundation of Gansu Province (Grant No. ZS001-A25-008-Z).
文摘Traditional image segmentation algorithms exhibit weak performance for plant cells which have complex structure. On the other hand, pulse-coupled neural network (PCNN) based on Eckhorn’s model of the cat visual cortex should be suitable to the segmentation of plant cell image. But the present theories cannot explain the relationship between the parameters of PCNN mathematical model and the effect of segmentation. Satisfactory results usually require time-consuming selection of experimental parameters. Mean-while, in a proper, selected parametric model, the number of iteration determines the segmented effect evaluated by visual judgment, which decreases the efficiency of image segmentation. To avoid these flaws, this note proposes a new PCNN algorithm for automatically segmenting plant embryonic cell image based on the maximum entropy principle. The algorithm produces a desirable result. In addition, a model with proper parameters can automatically determine the number of iteration, avoid visual judgment,