The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field...The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.展开更多
Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly...Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly influences the planning of digging trajectories and energy consumption.Load prediction of ECS mainly consists of two types of methods:physics-based modeling and data-driven methods.The former approach is based on known physical laws,usually,it is necessarily approximations of reality due to incomplete knowledge of certain processes,which introduces bias.The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise but requires a large amount of accurately labeled data to achieve generalization,which introduces variance.In addition,some parts of load are non-observable and latent,which cannot be measured from actual system sensing,so they can’t be predicted by data-driven methods.Herein,an innovative hybrid physics-informed deep neural network(HPINN)architecture,which combines physics-based models and data-driven methods to predict dynamic load of ECS,is presented.In the proposed framework,some parts of the theoretical model are incorporated,while capturing the difficult-to-model part by training a highly expressive approximator with data.Prior physics knowledge,such as Lagrangian mechanics and the conservation of energy,is considered extra constraints,and embedded in the overall loss function to enforce model training in a feasible solution space.The satisfactory performance of the proposed framework is verified through both synthetic and actual measurement dataset.展开更多
Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in ...Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.展开更多
The degradation of crosslinked polyethylene (XLPE) cable insulation during service, such as thermo-oxidation and water treeing may lead to a premature electrical breakdown of the XLPE insulation cables. Therefore, it ...The degradation of crosslinked polyethylene (XLPE) cable insulation during service, such as thermo-oxidation and water treeing may lead to a premature electrical breakdown of the XLPE insulation cables. Therefore, it is necessary to optimize the period of replacement to evenly distribute the replacement cost by ascertaining the deterioration degree. Estimation of the aging degree is at present the most important task for diagnosis of the residual lifetime of the power cable insulation. This paper presents a study on the changes in the dielectric properties of the thermally aged XLPE cables in the frequency range from 0.07~10 MHz. Based on electrical and physicochemical characterization, some new "dactylograms" for the thermally aged XLPE cable insulation have been proposed.展开更多
To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and buil...To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.展开更多
Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and ...Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and network in polymer matrix is the most critical for performance of PTC materials. In order to compensate for the destruction of the filler network structure caused by strong shearing during processing, an excessive conductive filler content is usually added into the polymer matrix, which in turn sacrifices its processability and mechanical properties. In this work, a facile post-treatment of the as-extruded cable, including thermal and electrical treatment to produce high-density polyethylene (HDPE)/carbon black (CB) cable with excellent PTC effect, is developed. It is found for the as-extruded sample, the strong shearing makes the CB particles disperse uniformly in HDPE matrix, and 25 wt% CB is needed for the formation of conductive paths. For the thermal-treated sample, a gradually aggregated CB filler structure is observed, which leads to the improvement of PTC effect and the notable reduction of CB content to 20 wt%. It is very interesting to see that for the sample with combined thermal and electrical treatment, CB particles are agglomerated and oriented along the electric field direction to create substantial conductive paths, which leads to a further decrease of CB content down to 15 wt%. In this way, self-limiting heating cables with excellent processability, mechanical properties and PTC effect have simultaneously been achieved.展开更多
Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained c...Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.展开更多
文摘The electric field intensity (EFI) is important characteristic quantity for evaluating the internal insulation state of cable joints. Based on finite element method, this paper proposes two EFI research methods, field-circuit coupling method and equivalent circuit method. The average EFI of the inner surface of the outer semi-conducting shield can be calculated from the current in the measuring circuit. The relative error between these two methods is about 15%, which roughly proves the consistency of the two methods. Further practical application research enables online monitoring of cable joints.
基金National Natural Science Foundation of China(Grant No.52075068)Shanxi Provincial Science and Technology Major Project(Grant No.20191101014).
文摘Electric cable shovel(ECS)is a complex production equipment,which is widely utilized in open-pit mines.Rational valuations of load is the foundation for the development of intelligent or unmanned ECS,since it directly influences the planning of digging trajectories and energy consumption.Load prediction of ECS mainly consists of two types of methods:physics-based modeling and data-driven methods.The former approach is based on known physical laws,usually,it is necessarily approximations of reality due to incomplete knowledge of certain processes,which introduces bias.The latter captures features/patterns from data in an end-to-end manner without dwelling on domain expertise but requires a large amount of accurately labeled data to achieve generalization,which introduces variance.In addition,some parts of load are non-observable and latent,which cannot be measured from actual system sensing,so they can’t be predicted by data-driven methods.Herein,an innovative hybrid physics-informed deep neural network(HPINN)architecture,which combines physics-based models and data-driven methods to predict dynamic load of ECS,is presented.In the proposed framework,some parts of the theoretical model are incorporated,while capturing the difficult-to-model part by training a highly expressive approximator with data.Prior physics knowledge,such as Lagrangian mechanics and the conservation of energy,is considered extra constraints,and embedded in the overall loss function to enforce model training in a feasible solution space.The satisfactory performance of the proposed framework is verified through both synthetic and actual measurement dataset.
基金Electric Ship Research De- velopment and Consortium (ESRDC) for providing financial support for the research work
文摘Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.
基金Major Research Project of Shanghai City(No. 045211024)
文摘The degradation of crosslinked polyethylene (XLPE) cable insulation during service, such as thermo-oxidation and water treeing may lead to a premature electrical breakdown of the XLPE insulation cables. Therefore, it is necessary to optimize the period of replacement to evenly distribute the replacement cost by ascertaining the deterioration degree. Estimation of the aging degree is at present the most important task for diagnosis of the residual lifetime of the power cable insulation. This paper presents a study on the changes in the dielectric properties of the thermally aged XLPE cables in the frequency range from 0.07~10 MHz. Based on electrical and physicochemical characterization, some new "dactylograms" for the thermally aged XLPE cable insulation have been proposed.
文摘To evaluate the thermal performance of a low-temperature electrical radiant floor heating system,an experimental facility equipped with a constant temperature chamber and different specimen floors is designed and built.The heating cable is installed in the floor slab with a unit-rated power of 30 W/m.Twenty-four different schemes are worked out and tested,which include three kinds of composite floor structures and eight kinds of cable distances.The cable distances are 30,40,50,60,80,100,130,150 mm.The main affective factors of the thermal performance and their influencing regularity are discussed.The experimental results show that the system has good stability and reliability,and the ratio of the radiation heat-transfer rate to the gross heat-transfer rate is greater than 50%.When the floor structure and the cable distance are fixed,the gross heat-transfer rate of the upper floor surface has a maximum value at an optimal cable distance.Under the experimental conditions in this paper,the optimal cable distance is 50 mm.
文摘Polymer/conductive filler composites have been widely used for the preparation of self-limiting heating cables with the positive temperature coefficient (PTC) effect. The control of conductive filler distribution and network in polymer matrix is the most critical for performance of PTC materials. In order to compensate for the destruction of the filler network structure caused by strong shearing during processing, an excessive conductive filler content is usually added into the polymer matrix, which in turn sacrifices its processability and mechanical properties. In this work, a facile post-treatment of the as-extruded cable, including thermal and electrical treatment to produce high-density polyethylene (HDPE)/carbon black (CB) cable with excellent PTC effect, is developed. It is found for the as-extruded sample, the strong shearing makes the CB particles disperse uniformly in HDPE matrix, and 25 wt% CB is needed for the formation of conductive paths. For the thermal-treated sample, a gradually aggregated CB filler structure is observed, which leads to the improvement of PTC effect and the notable reduction of CB content to 20 wt%. It is very interesting to see that for the sample with combined thermal and electrical treatment, CB particles are agglomerated and oriented along the electric field direction to create substantial conductive paths, which leads to a further decrease of CB content down to 15 wt%. In this way, self-limiting heating cables with excellent processability, mechanical properties and PTC effect have simultaneously been achieved.
基金the Ministry of Higher Education Malaysia for financially supported under the FundamentalResearch Grant Scheme (FRGS/1/2020/TK0/UNIMAP/02/17).
文摘Electrical trees are an aging mechanismmost associated with partial discharge(PD)activities in crosslinked polyethylene(XLPE)insulation of high-voltage(HV)cables.Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material.Two-dimensional(2D)optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods.However,since electrical trees can emerge in different shapes such as bush-type or branch-type,treeing images are complicated to segment due to manifestation of convoluted tree branches,leading to a high misclassification rate during segmentation.Therefore,this study proposed a new method for segmenting 2D electrical tree images based on the multi-scale line tracking algorithm(MSLTA)by integrating batch processing method.The proposed method,h-MSLTA aims to provide accurate segmentation of electrical tree images obtained over a period of tree propagation observation under optical microscopy.The initial phase involves XLPE sample preparation and treeing image acquisition under real-time microscopy observation.The treeing images are then sampled and binarized in pre-processing.In the next phase,segmentation of tree structures is performed using the h-MSLTA by utilizing batch processing in multiple instances of treeing duration.Finally,the comparative investigation has been conducted using standard performance assessment metrics,including accuracy,sensitivity,specificity,Dice coefficient and Matthew’s correlation coefficient(MCC).Based on segmentation performance evaluation against several established segmentation methods,h-MSLTA achieved better results of 95.43%accuracy,97.28%specificity,69.43%sensitivity rate with 23.38%and 24.16%average improvement in Dice coefficient and MCC score respectively over the original algorithm.In addition,h-MSLTA produced accurate measurement results of global tree parameters of length and width in comparison with the ground truth image.These results indicated that the proposed method had a solid performance in terms of segmenting electrical tree branches in 2D treeing images compared to other established techniques.