In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detect...In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.展开更多
It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray s...It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray streak camera equipped with a row of multi-pinhole arrays. By processing multiple sets of one-dimensional streaked image data acquired from various pinholes, we are capable of reconstructing high-resolution two-dimensional images with a temporal resolution of 38 ps and a spatial resolution of 18 μm. The temporal fiducial pulses accessed from external sources can advance the precise timing and accurately determine the arrival time of the laser. Moreover, it can correct the nonlinear sweeping speed of the streak camera. The effectiveness of this diagnostic has been successfully verified at the Shenguang-II laser facility,providing an indispensable tool for observing complex physical phenomena, such as the implosion process of laser-fusion experiments.展开更多
A method for analyzing the dynamic energy spectrum of intense pulsed ion beam(IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insu...A method for analyzing the dynamic energy spectrum of intense pulsed ion beam(IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes(MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450(active MID) and TEMP-4M(passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.展开更多
BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent ye...BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent years,energy spectrum computed tomography(CT)multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion(LVI)and nerve invasion(PNI)in GC patients.METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023,including 46 males and 16 females aged 36-71(57.5±9.1)years,were retrospectively collected.The patients were divided into a positive group(42 patients)and a negative group(20 patients)according to the presence of LVI/PNI.The CT values(CT40 keV,CT70 keV),iodine concentration(IC),and normalized IC(NIC)of lesions in the upper energy spectrum CT images of the arterial phase,venous phase,and delayed phase 40 and 70 keV were measured,and the slopes of the energy spectrum curves[K(40-70)]from 40 to 70 keV were calculated.Arterial Core Tip:To investigate the application value of multiparameter energy spectrum computed tomography(CT)imaging in the preoperative assessment of vascular and nerve infiltration in patients with gastric cancer(GC).The imaging data of GC patients were retrospectively analyzed to evaluate the accuracy and sensitivity of CT for identifying and quantifying vascular and nerve infiltration and for comparison with postoperative pathological results.The purpose of this study was to verify the clinical feasibility and potential advantages of multiparameter energy spectrum CT imaging in guiding preoperative diagnosis and treatment decision-making and to provide a new imaging basis for improving the diagnostic accuracy and prognosis of GC patients.展开更多
This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production...This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production is linearly propor- tional to the time duration of the laser pulse and the square of the beam size. The spectral double energy-integration is an intrinsic value of the laser-assisted X-ray photoionization, which linearly depends on the laser intensity and which quantita- tively reflects the strengths of the laser-field modulation and the quantum interference between photoelectrons. The spectral energy width also linearly depends on the laser intensity. These linear relationships suggest new methods for the in-situ measurement of laser intensity and pulse duration with high precision.展开更多
Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and s...Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and spectrum diagnosis are presented. It is shown that the DBD possesses a large discharge current and an intense optical emission from the nitrogen second positive system below 400 nm. The gas temperature remains very close to room temperature regardless of pulse polarity. Luminous photographs with a short exposure time down to 2 ns indicate that no filament is observed and the discharge is homogeneous.展开更多
To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light source...To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.展开更多
We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pum...We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pump power.Its repetition rate is 89 MHz. Using a pair of gratings and two knife edges as a filter, wavelength tunable picosecond pulses of tens to hundreds of milliwatts can be obtained in the broadband spectrum range. The output power, pulse width, and spectrum(center wavelength and linewidth) are adjusted by tuning the distance of the grating pair and/or the knife edges.Fixing the distance between the two gratings at 15 mm and keeping the output spectrum linewidth at approximately 20 nm,the shortest pulse width obtained is less than 1 ps centered at 1080 nm. The longest wavelength of the short pulses is around1200 nm, and its output power and pulse width are 40 m W and 5.79 ps, respectively. The generation of a flat broadband spectrum is also discussed in this paper.展开更多
The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper...The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper. A new application approach of the wavelet packed method to extract the feature of the pulse signal from energy distributing angle is expatiated. It is convenient for the microchip to process and judge by using the wavelet packet analysis method to make the pulse signals quantized and analyzed. Kinds of experiments are simulated in the lab, and the experiments prove that it is a convenient and accurate method to extract the feature of the pulse signal based on wavelet packed-energy spectrumanalysis.展开更多
A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which...A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion.展开更多
Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic ...Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.展开更多
It has been reported that electron-rotation coupling plays a significant role in diatomic nuclear dynamics induced by intense VUV pulses [Phys. Rev. A 102(2020) 033114;Phys. Rev. Res. 2(2020) 043348]. As a further ste...It has been reported that electron-rotation coupling plays a significant role in diatomic nuclear dynamics induced by intense VUV pulses [Phys. Rev. A 102(2020) 033114;Phys. Rev. Res. 2(2020) 043348]. As a further step, we present here investigations of the electron-rotation coupling effect in the presence of Auger decay channel for core-excited molecules, based on theoretical modeling of the total electron yield(TEY), resonant Auger scattering(RAS) and x-ray absorption spectra(XAS) for two showcases of CO and CH^(+) molecules excited by resonant intense x-ray pulses. The Wigner D-functions and the universal transition dipole operators are introduced to include the electron-rotation coupling for the core-excitation process. It is shown that with the pulse intensity up to 10^(16) W/cm^(2), no sufficient influence of the electron-rotation coupling on the TEY and RAS spectra can be observed. This can be explained by a suppression of the induced electron-rotation dynamics due to the fast Auger decay channel, which does not allow for effective Rabi cycling even at extreme field intensities,contrary to transitions in optical or VUV range. For the case of XAS, however, relative errors of about 10% and 30% are observed for the case of CO and CH^(+), respectively, when the electron-rotation coupling is neglected.It is concluded that conventional treatment of the photoexcitation, neglecting the electron-rotation coupling,can be safely and efficiently employed to study dynamics at the x-ray transitions by means of electron emission spectroscopy, yet the approximation breaks down for nonlinear processes as stimulated emission, especially for systems with light atoms.展开更多
The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting com...The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.展开更多
The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure. The X-ray diffraction (XRD) patterns of the films prepared at a su...The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure. The X-ray diffraction (XRD) patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and fl-C3N4 crystallites. Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.展开更多
The photoelectron energy spectra (PESs) excited by narrow bandwidth attosecond x-ray pulses in the presence of a few-cycle laser are quantum-mechanically calculated. Transfer equations are used to reconstruct the de...The photoelectron energy spectra (PESs) excited by narrow bandwidth attosecond x-ray pulses in the presence of a few-cycle laser are quantum-mechanically calculated. Transfer equations are used to reconstruct the detailed temporal structure of an attosecond x-ray pulse directly from a measured PES. Theoretical analysis shows that the temporal uncertainties of the pulse reconstruction depend on the x-ray bandwidth. The procedure of pulse reconstruction is direct and simple without making any previous pulse assumption, data fitting analysis and time-resolved measurement of PESs. The temporal measurement range is half of a laser optical cycle.展开更多
In this study, the emission spectra of active atoms O (3p5P → 3s5S20 777.4 nm), Hα (3P → 2S 656.3 nm) and N (3p4P → 3sαS0 742.3 nm, 744.2 nm, 746.8 nm) produced by the positive high-voltage pulsed corona discharg...In this study, the emission spectra of active atoms O (3p5P → 3s5S20 777.4 nm), Hα (3P → 2S 656.3 nm) and N (3p4P → 3sαS0 742.3 nm, 744.2 nm, 746.8 nm) produced by the positive high-voltage pulsed corona discharge (HVPCD) of N2 and H2O mixture in a needle-plate reactor have successfully been recorded against a severe electromagnetic interference coming from the HVPCD at one atmosphere. The effects of the peak voltage, the repetition rate of pulsed discharge and the flow rate of oxygen on the production of those active atoms are investigated. It is found that when the peak voltage and the repetition rate of the pulsed discharge are increased, the emission intensities of those active atoms rise correspondingly. And the emission intensities of O (3p5P → 3s5S20 777.4 nm), Hα (3P → 2S 656.3 nm) and N (3p4P → 3s4S0 742.3 nm, 744.2 nm, 746.8 nm) increase with the flow rate of oxygen (from 0 to 25 ml/min) and achieve a maximum value at a flow rate of 25 ml/min. When the flow rate of oxygen is increased further, the emission intensities of those atoms visibly decrease correspondingly. The main physicochemical processes of interaction involved between electrons, neutrals and ions are also discussed.展开更多
Investigations show that X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity 1 and field envelope F(t) (time t, pulse duration VL, carrier-envelo...Investigations show that X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity 1 and field envelope F(t) (time t, pulse duration VL, carrier-envelope-phase Ф): accuracy, dynamic range, and rapidness. The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift. The maximum momentum p and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum, PES) linearly depend on I^1/2 and τL, respectively. Ф and F(t) can be determined from the PES cut-off energy and peak positions. The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.展开更多
In this paper,high resolution temporal-spatial diagnostics are employed to research the optical characteristics of nanosecond pulsed dielectric barrier discharge in needle-plate electrode configuration.Temporal-spatia...In this paper,high resolution temporal-spatial diagnostics are employed to research the optical characteristics of nanosecond pulsed dielectric barrier discharge in needle-plate electrode configuration.Temporal-spatial distributions of discharge images,the emission intensities of optical emission spectra,and plasma vibrational and rotational temperatures are investigated.By analyzing the evolution of vibrational and rotational temperatures in space and time dimensions,the energy distribution and energy transfer process in plasma are also discussed.It is found that a diffuse structure with high density plasma concentrated in the region near the needle tip can be presented in nanosecond pulsed discharge,and an obvious energy transfer from electronic energy to vibration energy can be observed in each discharge pulse.展开更多
The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolutio...The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.展开更多
Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half m...Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half maximum, with an electron of γ0 = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.展开更多
文摘In high-altitude nuclear detonations,the proportion of pulsed X-ray energy can exceed 70%,making it a specific monitoring signal for such events.These pulsed X-rays can be captured using a satellite-borne X-ray detector following atmospheric transmission.To quantitatively analyze the effects of different satellite detection altitudes,burst heights,and transmission angles on the physical processes of X-ray transport and energy fluence,we developed an atmospheric transmission algorithm for pulsed X-rays from high-altitude nuclear detonations based on scattering correction.The proposed method is an improvement over the traditional analytical method that only computes direct-transmission X-rays.The traditional analytical method exhibits a maximum relative error of 67.79% compared with the Monte Carlo method.Our improved method reduces this error to within 10% under the same conditions,even reaching 1% in certain scenarios.Moreover,its computation time is 48,000 times faster than that of the Monte Carlo method.These results have important theoretical significance and engineering application value for designing satellite-borne nuclear detonation pulsed X-ray detectors,inverting nuclear detonation source terms,and assessing ionospheric effects.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030700 and XDA25030500)the National Key R&D Program of China (Grant Nos. 2022YFA1603200 and 2022YFA1603203)the National Natural Science Foundation of China (Grant Nos. 12175018, 12135001, 12075030, and 11903006)。
文摘It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray streak camera equipped with a row of multi-pinhole arrays. By processing multiple sets of one-dimensional streaked image data acquired from various pinholes, we are capable of reconstructing high-resolution two-dimensional images with a temporal resolution of 38 ps and a spatial resolution of 18 μm. The temporal fiducial pulses accessed from external sources can advance the precise timing and accurately determine the arrival time of the laser. Moreover, it can correct the nonlinear sweeping speed of the streak camera. The effectiveness of this diagnostic has been successfully verified at the Shenguang-II laser facility,providing an indispensable tool for observing complex physical phenomena, such as the implosion process of laser-fusion experiments.
基金supported by the National Natural Science Foundation of China(No.11175012)the National Magnetic Confinement Fusion Program(No.2013GB109004)
文摘A method for analyzing the dynamic energy spectrum of intense pulsed ion beam(IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes(MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450(active MID) and TEMP-4M(passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.
文摘BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent years,energy spectrum computed tomography(CT)multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion(LVI)and nerve invasion(PNI)in GC patients.METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023,including 46 males and 16 females aged 36-71(57.5±9.1)years,were retrospectively collected.The patients were divided into a positive group(42 patients)and a negative group(20 patients)according to the presence of LVI/PNI.The CT values(CT40 keV,CT70 keV),iodine concentration(IC),and normalized IC(NIC)of lesions in the upper energy spectrum CT images of the arterial phase,venous phase,and delayed phase 40 and 70 keV were measured,and the slopes of the energy spectrum curves[K(40-70)]from 40 to 70 keV were calculated.Arterial Core Tip:To investigate the application value of multiparameter energy spectrum computed tomography(CT)imaging in the preoperative assessment of vascular and nerve infiltration in patients with gastric cancer(GC).The imaging data of GC patients were retrospectively analyzed to evaluate the accuracy and sensitivity of CT for identifying and quantifying vascular and nerve infiltration and for comparison with postoperative pathological results.The purpose of this study was to verify the clinical feasibility and potential advantages of multiparameter energy spectrum CT imaging in guiding preoperative diagnosis and treatment decision-making and to provide a new imaging basis for improving the diagnostic accuracy and prognosis of GC patients.
基金supported by the National Natural Science Foundation of China(Grant No.11175010)
文摘This study shows that the photoelectron energy spectrum generated by an intense laser pulse in the presence of a continuous X-ray has interesting and useful statistical properties. The total photoionization production is linearly propor- tional to the time duration of the laser pulse and the square of the beam size. The spectral double energy-integration is an intrinsic value of the laser-assisted X-ray photoionization, which linearly depends on the laser intensity and which quantita- tively reflects the strengths of the laser-field modulation and the quantum interference between photoelectrons. The spectral energy width also linearly depends on the laser intensity. These linear relationships suggest new methods for the in-situ measurement of laser intensity and pulse duration with high precision.
基金supported by National Natural Science Foundation of China (Nos. 50707032, 11076026)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KGCX2-YW-339)+1 种基金the National Basic Research Program of China (No. 2011CB209405)the State Key Laboratory of Control and Simulation of Power Systems and Generating Equipment in Tsinghua University (No. SKLD09KZ05)
文摘Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and spectrum diagnosis are presented. It is shown that the DBD possesses a large discharge current and an intense optical emission from the nitrogen second positive system below 400 nm. The gas temperature remains very close to room temperature regardless of pulse polarity. Luminous photographs with a short exposure time down to 2 ns indicate that no filament is observed and the discharge is homogeneous.
基金supported by National Natural Science Foundation of China(No.11475202,11405187)the Youth Innovation Association of Chinese Academy of SciencesKey Research Program of Frontier Sciences,CAS(No.QYZDJ-SSW-SLH001)
文摘To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e.,the echo-enabled harmonic generation(EEHG) scheme, in a diffraction-limited storage ring(DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.
基金supported by the National Basic Research Program of China(Grant No.2013CB922404)the National Scientific Research Project of China(Grant No.61177047)the National Natural Science Foundation of China(Grant No.61575011)
文摘We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pump power.Its repetition rate is 89 MHz. Using a pair of gratings and two knife edges as a filter, wavelength tunable picosecond pulses of tens to hundreds of milliwatts can be obtained in the broadband spectrum range. The output power, pulse width, and spectrum(center wavelength and linewidth) are adjusted by tuning the distance of the grating pair and/or the knife edges.Fixing the distance between the two gratings at 15 mm and keeping the output spectrum linewidth at approximately 20 nm,the shortest pulse width obtained is less than 1 ps centered at 1080 nm. The longest wavelength of the short pulses is around1200 nm, and its output power and pulse width are 40 m W and 5.79 ps, respectively. The generation of a flat broadband spectrum is also discussed in this paper.
文摘The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper. A new application approach of the wavelet packed method to extract the feature of the pulse signal from energy distributing angle is expatiated. It is convenient for the microchip to process and judge by using the wavelet packet analysis method to make the pulse signals quantized and analyzed. Kinds of experiments are simulated in the lab, and the experiments prove that it is a convenient and accurate method to extract the feature of the pulse signal based on wavelet packed-energy spectrumanalysis.
基金supported by National Natural Science Foundation of China(Nos.11405158 and 11435011)Development Foundation of China Academy of Engineering Physics(Nos.2014B0102011 and 2014B0102012)
文摘A new time-resolved shifted dual transmission grating spectrometer (SDTGS) is designed and fabricated in this work. This SDTGS uses a new shifted dual transmission grating (SDTG) as its dispersive component, which has two sub transmission gratings with different line densities, of 2000 lines/mm and 5000 lines/mm. The axes of the two sub transmission gratings in SDTG are horizontally and vertically shifted a certain distance to measure a broad range of 0.1-5 keV time-resolved X-ray spectra. The SDTG has been calibrated with a soft X-ray beam of the synchrotron radiation facility and its diffraction efficiency is also measured. The designed SDTGS can take full use of the space on a record panel and improve the precision for measuring spatial and temporal spectrum simultaneously. It will be a promising application for accurate diagnosis of the soft X-ray spectrum in inertial confinement fusion.
文摘Many conventional methods of testing strong and pulsed electromagnetic fields,the ones used in radars for example,had deficiencies due to the difficulty in obtaining simultaneous information about the electromagnetic field's peak both in the time domain and in the frequency domain.With regard to this problem,after analyzing the time-domain and the frequency-domain characteristics of radar pulsed signals,we propose a new time-frequency combination test method based on the correction of the test parameters,as well as its correction method at different bandwidths.The test method is applied in a quick test of a high-power pulsed radar signal,and the corrected results have error less than 1 dB in both the time domain and the frequency domain,which indicates that the proposed time-frequency combined method is effective in testing strong and pulsed electromagnetic fields.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11934004,11974230,and 11904192)the Education of Russian Federation (Grant No.FSRZ-2020-0008)。
文摘It has been reported that electron-rotation coupling plays a significant role in diatomic nuclear dynamics induced by intense VUV pulses [Phys. Rev. A 102(2020) 033114;Phys. Rev. Res. 2(2020) 043348]. As a further step, we present here investigations of the electron-rotation coupling effect in the presence of Auger decay channel for core-excited molecules, based on theoretical modeling of the total electron yield(TEY), resonant Auger scattering(RAS) and x-ray absorption spectra(XAS) for two showcases of CO and CH^(+) molecules excited by resonant intense x-ray pulses. The Wigner D-functions and the universal transition dipole operators are introduced to include the electron-rotation coupling for the core-excitation process. It is shown that with the pulse intensity up to 10^(16) W/cm^(2), no sufficient influence of the electron-rotation coupling on the TEY and RAS spectra can be observed. This can be explained by a suppression of the induced electron-rotation dynamics due to the fast Auger decay channel, which does not allow for effective Rabi cycling even at extreme field intensities,contrary to transitions in optical or VUV range. For the case of XAS, however, relative errors of about 10% and 30% are observed for the case of CO and CH^(+), respectively, when the electron-rotation coupling is neglected.It is concluded that conventional treatment of the photoexcitation, neglecting the electron-rotation coupling,can be safely and efficiently employed to study dynamics at the x-ray transitions by means of electron emission spectroscopy, yet the approximation breaks down for nonlinear processes as stimulated emission, especially for systems with light atoms.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675014)
文摘The photoelectron energy spectra (PESs) excited by monochromatic femtosecond x-ray pulses in the presence of a femtosecond laser are investigated. APES is composed of a set of separate peaks, showing interesting comb-like structures. These structures result from the quantum interferences between photoelectron wave packets generated at different times. The width and the localization of each peak as well as the number of peaks are determined by all the laser and x-ray parameters. Most of peak heights of the PES are higher than the classical predictions.
基金supported by Natural Science Foundation of Hubei Province(No.2005ABA023)
文摘The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure. The X-ray diffraction (XRD) patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and fl-C3N4 crystallites. Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675014)
文摘The photoelectron energy spectra (PESs) excited by narrow bandwidth attosecond x-ray pulses in the presence of a few-cycle laser are quantum-mechanically calculated. Transfer equations are used to reconstruct the detailed temporal structure of an attosecond x-ray pulse directly from a measured PES. Theoretical analysis shows that the temporal uncertainties of the pulse reconstruction depend on the x-ray bandwidth. The procedure of pulse reconstruction is direct and simple without making any previous pulse assumption, data fitting analysis and time-resolved measurement of PESs. The temporal measurement range is half of a laser optical cycle.
基金The project supported by the United Fund of the National Natural Science Foundation of China and the Engineering Physics Institute of China (No. 10276008)the funding of Liaoning Province Natural Science Foundation (No. 20022138)
文摘In this study, the emission spectra of active atoms O (3p5P → 3s5S20 777.4 nm), Hα (3P → 2S 656.3 nm) and N (3p4P → 3sαS0 742.3 nm, 744.2 nm, 746.8 nm) produced by the positive high-voltage pulsed corona discharge (HVPCD) of N2 and H2O mixture in a needle-plate reactor have successfully been recorded against a severe electromagnetic interference coming from the HVPCD at one atmosphere. The effects of the peak voltage, the repetition rate of pulsed discharge and the flow rate of oxygen on the production of those active atoms are investigated. It is found that when the peak voltage and the repetition rate of the pulsed discharge are increased, the emission intensities of those active atoms rise correspondingly. And the emission intensities of O (3p5P → 3s5S20 777.4 nm), Hα (3P → 2S 656.3 nm) and N (3p4P → 3s4S0 742.3 nm, 744.2 nm, 746.8 nm) increase with the flow rate of oxygen (from 0 to 25 ml/min) and achieve a maximum value at a flow rate of 25 ml/min. When the flow rate of oxygen is increased further, the emission intensities of those atoms visibly decrease correspondingly. The main physicochemical processes of interaction involved between electrons, neutrals and ions are also discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 11175010)
文摘Investigations show that X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity 1 and field envelope F(t) (time t, pulse duration VL, carrier-envelope-phase Ф): accuracy, dynamic range, and rapidness. The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift. The maximum momentum p and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum, PES) linearly depend on I^1/2 and τL, respectively. Ф and F(t) can be determined from the PES cut-off energy and peak positions. The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.
基金supported by the Key Project of Chinese National Programs for Research and Development(No. 2016YFC0207200)National Natural Science Foundation of China(Nos.51677019,51407022,51377014)
文摘In this paper,high resolution temporal-spatial diagnostics are employed to research the optical characteristics of nanosecond pulsed dielectric barrier discharge in needle-plate electrode configuration.Temporal-spatial distributions of discharge images,the emission intensities of optical emission spectra,and plasma vibrational and rotational temperatures are investigated.By analyzing the evolution of vibrational and rotational temperatures in space and time dimensions,the energy distribution and energy transfer process in plasma are also discussed.It is found that a diffuse structure with high density plasma concentrated in the region near the needle tip can be presented in nanosecond pulsed discharge,and an obvious energy transfer from electronic energy to vibration energy can be observed in each discharge pulse.
基金supported by National Natural Science Foundation of China (Nos.10875023,11175035)the Ph.D research program(No.200801411040 ) of Educational Ministry+1 种基金the Scientific and Technical Foundation of Liaoning Province (No.20082168)National Magnetic Confinement Fusion Science Program of China (Nos.2009GB106004,2008CB717801)
文摘The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.
基金The project supported by National Natural Science Foundation of China under Grant No, 10375083 and the Special Foundation for State Key Basic Research Program of China under Grant No. TG1999075206-2
文摘Abstract Linear Thomson scattering of a short pulse laser by relativistic electron has been investigated using computer simulations. It is shown that scattering of an intense laser pulse of -33 fs full width at half maximum, with an electron of γ0 = 10 initial energy, generates an ultrashort, pulsed radiation of 76 attoseconds with a photon wavelength of 2.5 nm in the backward direction. The scattered radiation generated by a highly relativistic electron has superior quality in terms of its pulse width and angular distribution in comparison to the one generated by lower relativistic energy electron.