In recent research, a novel method combined with pulse current (PC) deposition and the ultrasonic (U) field was used to fabricate pure nickel and nickel-ceria composite coatings, respectively. Morphology, crack pr...In recent research, a novel method combined with pulse current (PC) deposition and the ultrasonic (U) field was used to fabricate pure nickel and nickel-ceria composite coatings, respectively. Morphology, crack propagation, and crystal texture were observed and analysed by using environment scanning electron microscopy (E-SEM) and transmission electron microscopy (TEM). Orthogonal experiment [L16 (45)] was designed to optimize the parameters of pulsed power and the appropriate amount of RE addition based on microhardness. Effect of RE addition and pulsed current on the mechanism of co-electrodeposition was also investigated and compared. Experimental results indicated that it produced the alloying coatings, exhibiting compact grain and amorphous state. Nano-sized RE would preferentially occupy and pad at the edge of cracked gaps and micropore to limit the growing location and space for coarse Ni grain. Furthermore, during annealing at 480 ℃ for 2 h, a solid-solution precipitated phase named NiCexO1-x (0展开更多
In the present work, pulse current deposition is used to deposit evenly distributed and uniformly sized Ag nanoparticles onto a TiO2 nanotube array as photoelectrode in dye-sensitized solar cells (DSSCs), and the si...In the present work, pulse current deposition is used to deposit evenly distributed and uniformly sized Ag nanoparticles onto a TiO2 nanotube array as photoelectrode in dye-sensitized solar cells (DSSCs), and the size and amount of loading Ag nanoparticles are controlled by the pulse deposition time. Due to the enhanced light absorption and electron-hole separation caused by plasmon effect, DSSCs based on Ag-modified TiO2 nanotube arrays show higher energy conversion efficiencies than those based on bare nanotubes with the same tube length. Particularly, DSSC based on nanotubes modified using pulse deposition time 1 s/3 s delivers the highest energy conversion efficiency of 1.68% and the largest short-circuit current of 4.37 mA/ cm2, while DSSC consisting of bare nanotubes exhibits efficiency of 1.20% and short-circuit current of 2.27 mA/cm2, which represents a 40% enhancement of cell efficiency in DSSC based on Ag-modified Ti02 nanotubes. It is also noted that overly long pulse deposition time will not further increase DSSC efficiency due to agglomeration of Ag particles. For example, when the pulse deposition time is increased to 2 s/6 s, DSSC based on Ag-modified nanotubes exhibits a lower efficiency of 1.42%. Moreover, high-concentration TiCI4 treatment on TiO2 nanotube arrays can further increase the energy conversion efficiencies to 3.82% and 2.61% for DSSC based on Ag-modified TiO2 nanotubes and DSSC based on bare TiO2 nanotubes, respectively, by significantly creating more surface area for dye loading.展开更多
基金Project supported by National Natural Science Foundation of China (50775113)Natural Science Foundation of Jiangsu Province (BK2007201)
文摘In recent research, a novel method combined with pulse current (PC) deposition and the ultrasonic (U) field was used to fabricate pure nickel and nickel-ceria composite coatings, respectively. Morphology, crack propagation, and crystal texture were observed and analysed by using environment scanning electron microscopy (E-SEM) and transmission electron microscopy (TEM). Orthogonal experiment [L16 (45)] was designed to optimize the parameters of pulsed power and the appropriate amount of RE addition based on microhardness. Effect of RE addition and pulsed current on the mechanism of co-electrodeposition was also investigated and compared. Experimental results indicated that it produced the alloying coatings, exhibiting compact grain and amorphous state. Nano-sized RE would preferentially occupy and pad at the edge of cracked gaps and micropore to limit the growing location and space for coarse Ni grain. Furthermore, during annealing at 480 ℃ for 2 h, a solid-solution precipitated phase named NiCexO1-x (0
基金supported by LABOR-RCS grantBP-Gulf of Mexico Research Initiative(GRI)grant
文摘In the present work, pulse current deposition is used to deposit evenly distributed and uniformly sized Ag nanoparticles onto a TiO2 nanotube array as photoelectrode in dye-sensitized solar cells (DSSCs), and the size and amount of loading Ag nanoparticles are controlled by the pulse deposition time. Due to the enhanced light absorption and electron-hole separation caused by plasmon effect, DSSCs based on Ag-modified TiO2 nanotube arrays show higher energy conversion efficiencies than those based on bare nanotubes with the same tube length. Particularly, DSSC based on nanotubes modified using pulse deposition time 1 s/3 s delivers the highest energy conversion efficiency of 1.68% and the largest short-circuit current of 4.37 mA/ cm2, while DSSC consisting of bare nanotubes exhibits efficiency of 1.20% and short-circuit current of 2.27 mA/cm2, which represents a 40% enhancement of cell efficiency in DSSC based on Ag-modified Ti02 nanotubes. It is also noted that overly long pulse deposition time will not further increase DSSC efficiency due to agglomeration of Ag particles. For example, when the pulse deposition time is increased to 2 s/6 s, DSSC based on Ag-modified nanotubes exhibits a lower efficiency of 1.42%. Moreover, high-concentration TiCI4 treatment on TiO2 nanotube arrays can further increase the energy conversion efficiencies to 3.82% and 2.61% for DSSC based on Ag-modified TiO2 nanotubes and DSSC based on bare TiO2 nanotubes, respectively, by significantly creating more surface area for dye loading.