AIM: To investigate the pathological characteristics of non-thermal damage induced by pulsed high intensity focused ultrasound (PHIFU) combined with ultrasound contrast agent (UCA), SonoVue (Bracco SpA, Milan, I...AIM: To investigate the pathological characteristics of non-thermal damage induced by pulsed high intensity focused ultrasound (PHIFU) combined with ultrasound contrast agent (UCA), SonoVue (Bracco SpA, Milan, Italy) in rabbit liver VX2 tumor. METHODS: Liver VX2 tumor models were established in 20 rabbits, which were divided randomly into PHIFU combined with ultrasound contrast agent group (PHIFU + UCA group) and sham group. In the PHIFU + UCA group, 0.2 mL of SonoVue was injected intravenously into the tumor, followed by ultrasound exposure of Isp 5900 W/cm^2. The rabbits were sacrificed one day after ultrasound exposure. Specimens of the exposed tumor tissues were obtained and observed pathologically under light microscope and transmission electron microscope. The remaining tumor tissues were sent for 2,3,5-Triphenyltetrazolium chloride (TTC) staining. RESULTS: Before Trc staining, tumor tissues in both the sham and the PHIFU + UCA groups resembled gray fish meat, After TIC staining, the tumor tissues were uniformly stained red, with a clear boundary between tumor tissue and normal tissue, Histological examination showed signs of tumor cell injury in PHIFU + UCA group, with cytoplasmic vacuoles of various sizes, chromatin margination and karyopyknosis. Electron microscopic examination revealed tumor cell volume reduction, karyopyknosis, chromatin margination, intercellular space widening, the presence of high electro'n-density apoptotic bodies and vacuoles in cytoplasm. CONCLUSION: The non-thermal effects of PHIFU combined with UCA can be used to ablate rabbit liver VX2 tumors.展开更多
基金Supported by Key Project of National Natural Science Foundation of China,No.30830040Outstanding Youth Funding Project of China,No.30325027Key Project of Natural Science Foundation of CQ CSTS,No.CSTC2006BA5020
文摘AIM: To investigate the pathological characteristics of non-thermal damage induced by pulsed high intensity focused ultrasound (PHIFU) combined with ultrasound contrast agent (UCA), SonoVue (Bracco SpA, Milan, Italy) in rabbit liver VX2 tumor. METHODS: Liver VX2 tumor models were established in 20 rabbits, which were divided randomly into PHIFU combined with ultrasound contrast agent group (PHIFU + UCA group) and sham group. In the PHIFU + UCA group, 0.2 mL of SonoVue was injected intravenously into the tumor, followed by ultrasound exposure of Isp 5900 W/cm^2. The rabbits were sacrificed one day after ultrasound exposure. Specimens of the exposed tumor tissues were obtained and observed pathologically under light microscope and transmission electron microscope. The remaining tumor tissues were sent for 2,3,5-Triphenyltetrazolium chloride (TTC) staining. RESULTS: Before Trc staining, tumor tissues in both the sham and the PHIFU + UCA groups resembled gray fish meat, After TIC staining, the tumor tissues were uniformly stained red, with a clear boundary between tumor tissue and normal tissue, Histological examination showed signs of tumor cell injury in PHIFU + UCA group, with cytoplasmic vacuoles of various sizes, chromatin margination and karyopyknosis. Electron microscopic examination revealed tumor cell volume reduction, karyopyknosis, chromatin margination, intercellular space widening, the presence of high electro'n-density apoptotic bodies and vacuoles in cytoplasm. CONCLUSION: The non-thermal effects of PHIFU combined with UCA can be used to ablate rabbit liver VX2 tumors.