BACKGROUND Knee and hip osteoarthritis affects millions of people around the world and is expected to rise even more in frequency as the population ages.Joint arthroplasty is the surgical management of choice in these...BACKGROUND Knee and hip osteoarthritis affects millions of people around the world and is expected to rise even more in frequency as the population ages.Joint arthroplasty is the surgical management of choice in these articulations.Heterotopic ossi-fication and radiolucent lines formation are two frequent problems faced in hip and knee replacements respectively.Some studies show that the usage of pulsed lavage may prevent their formation.AIM To compare pulsed lavage to standard lavage in joint arthroplasty.METHODS PubMed,Cochrane,and Google Scholar(page 1-20)were searched till December 2023.Only comparative studies were included.The clinical outcomes evaluated were the heterotopic ossification formation in hip replacements,radiolucent lines formation,and functional knee scores in knee replacements.RESULTS Four studies met the inclusion criteria and were included in this meta-analysis.Pulsed lavage was shown to reduce the formation of radiolucent lines(P=0.001).However,no difference was seen in the remaining outcomes CONCLUSION Pulsed lavage reduced the formation of radiolucent lines in knee replacements.No difference was seen in the remaining outcomes.Furthermore,the clinical significance of these radiolucent lines is poorly understood.Better conducted randomized controlled studies and cost-effectivity studies are needed to reinforce these findings.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
The synthesis of gold nanoparticles(Au NPs)was carried out by utilising the pulsed laser ablation in liquids(PLAL)method with a microchip laser(MCL)system.This portable system features low power consumption and a gian...The synthesis of gold nanoparticles(Au NPs)was carried out by utilising the pulsed laser ablation in liquids(PLAL)method with a microchip laser(MCL)system.This portable system features low power consumption and a giant-pulse laser.Aqueous solutions with and without the surfactant poly(N-vinyl-2-pyrrolidone)(PVP)were used for laser ablation of a bulk gold rod to achieve the successful formation of a colloidal solution of Au NPs.The gas bubbles formed by heating the aqueous medium around the surface of the gold target significantly reduced the efficiency of Au NP ablation.This effect was more pronounced and prolonged in high-viscosity solutions,hindering energy transfer from subsequent laser pulses to the target.Additionally,it was suggested that the chain length of PVP does not affect either the size of the Au NPs or the ablation efficiency.Videography experiments were conducted to explore the ablation mechanism employed by the MCL system.The relatively short pulse duration of the MCL system may contribute to the formation of NPs with consistent size,which were suppressed to grow in significantly smaller cavitation bubbles with short lifetimes.展开更多
The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt j...The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition.展开更多
Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varietie...Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.展开更多
The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experimen...The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experiments are done. The experiment results agree with those of theory analyses. It can be shown that the relations are correct and the conclusion of theory analyses is reasonable.展开更多
We explores Hamiltonian reduction in pulse-controlled finite-dimensional quantum systems with near-degenerate eigenstates. A quantum system with a non-degenerate ground state and several near-degenerate excited states...We explores Hamiltonian reduction in pulse-controlled finite-dimensional quantum systems with near-degenerate eigenstates. A quantum system with a non-degenerate ground state and several near-degenerate excited states is controlled by a short pulse, and the objective is to maximize the collective population on all excited states when we treat all of them as one level. Two cases of the systems are shown to be equivalent to effective two-level systems. When the pulse is weak, simple relations between the original systems and the reduced systems are obtained. When the pulse is strong, these relations are still available for pulses with only one frequency under the first-order approximation.展开更多
The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However,...The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integra- tion derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjust- ment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the pa- per. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.展开更多
The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under...The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.展开更多
BACKGROUND Cardiogenic shock (CS) secondary to acute myocardial infarction (AMI) complicates management of the condition, and often leads to poor prognosis. Prompt and accurate monitoring of cardiovascular and accompa...BACKGROUND Cardiogenic shock (CS) secondary to acute myocardial infarction (AMI) complicates management of the condition, and often leads to poor prognosis. Prompt and accurate monitoring of cardiovascular and accompanying hemodynamic changes is crucial in achieving adequate management of the condition. Advances in technology has availed procedures such as pulse index continuous cardiac output (PiCCO), which can offer precise monitoring of cardiovascular functions and hemodynamic parameters. In this study, PiCCO is evaluated for its potential utility in improving management and clinical outcomes among elderly patients with AMI complicated by CS. AIM To assess whether use of the PiCCO system can improve clinical outcomes in elderly patients with AMI complicated by CS.METHODS Patients from emergency intensive care units (EICU) or coronary care units (CCU) were randomized to receive PiCCO monitoring or not. The APACHE II score, SOFA score, hs-TnI, NT-proBNP, PaO2/FiO2 ratio and lactate levels on day 1, 3 and 7 after treatment were compared. The infusion and urine volume at 0-24 h, 24-48 h and 48-72 h were recorded, as were the cardiac index (CI), extravascular lung water index (EVLWI), intrathoracic blood volume index (ITBVI) and global end diastolic volume index (GEDVI) at similar time intervals. RESULTS Sixty patients with AMI complicated by CS were included in the study. The PiCCO group had a significantly lower APACHE II score, SOFA score, hs-TnI and NT-proBNP levels on day 1, 3 and 7 after treatment. The infusion and urine volume during 0-24 h in the PiCCO group were significantly greater, and this group also showed significantly higher ADL scores. Furthermore, the PiCCO group spent lesser days on vasoactive agents, mechanical ventilation, and had a reduced length of stay in EICU/CCU. Additionally, the CI was significantly higher at 48 h and 72 h in the PiCCO group compared with that at 24 h, and the EVLWI, ITBVI and GEDVI were significantly decreased at 48 h and 72 h. CONCLUSION Applying the PiCCO system could improve the clinical outcomes of elderly patients with AMI complicated by CS.展开更多
The highpower pulsed power supply system for the magnetic field of the HL-2A Tokamak is described in this paper. The total output power of its eight magnetic field power supply units of nearly 250 MW. Their highest DC...The highpower pulsed power supply system for the magnetic field of the HL-2A Tokamak is described in this paper. The total output power of its eight magnetic field power supply units of nearly 250 MW. Their highest DC output voltage and current are 3510 V and 45 kA, respectively. All the units are operated in a pulsed mode. The pulse duration is 5 s, and the cyclic period is 15 min. The power supply system consists mainly of pulsed flywheel motor generators, rectifying transformers, thyristor converters, diode rectifiers and switches. The system incorporates many key technologies-supply equalization with two generators and four diode bridges, constant-angle phase triggers with a wide frequency range, current equalization, a status detector for the high current 6-phase converter, and advanced monitoring based on a programmable logic computer and engineering parameter measurement. The experimental results show that the performance of the power supply system satisfies the requirements of HL-2A experiments very well.展开更多
A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC...A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.展开更多
The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied. The results indicated that the cementite was decomposed in a short time by high current density electropulsin...The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied. The results indicated that the cementite was decomposed in a short time by high current density electropulsing. With increasing electropulsing time, the in situ nucleation of graphite in cementite was accompanied with the quick decomposition of cementite. The dislocation accumulation adjacent to the cementite and the quick diffusion of carbon atom by electropulsing were main reasons for the quick decomposition of cementite. The in situ nucleation of graphite in the cementite resulted from the dislocation climbing crossing the cementite lamellae.展开更多
To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paral...To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paralleled units to increase the system output capability. The hierarchical control system is adopted to improve the reliability and flexibility of the high power arc plasma inverter. To ensure the reliable turn on and off of the IGBT module in each building block unit, a special pulse drive circuit is designed by using pulse transformer. The experimental result indicates that the high power arc plasma inverter system can transfer 300 kW arc plasma energy reliably with high efficiency.展开更多
The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested i...The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.展开更多
In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play re...In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.展开更多
Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in...Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance.展开更多
Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure ...Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure could be reduced by decreasing the ratio of length to diameter of nozzle. The friction between high speed air and pipe wall would be reduced if the nozzle is designed to be converging shape comparing with straight shape. But the volume flow and pressure, discussed in these studies, do not describe energy loss of the blowing system directly. Pneumatic power is an innovative principle to estimate pneumatic system’s energy consumption directly. Based on the above principle, a pulse blowing method is put forward for saving energy. A flow experiment is carried out, in which the high speed air flows from the pulse blowing system and continuous blowing system respectively to a plate with grease on top. Supply pressure and the volume of air used for removing the grease are measured to calculate energy consumption. From the experiment result, the pulse blowing system performs to conserve energy comparing with the continuous blowing system. The frequency and duty ratio of pulse flow influence the blowing characteristic. The pulse blowing system performs to be the most efficient at the specified frequency and duty ratio. Then a pneumatic self-oscillated method based on air operated valve is put forward to generate pulse flow. A simulation is made about dynamic modeling the air operated valve and calculating the motion of the valve core and output pressure. The simulation result verifies the system to be able to generate pulse flow, and predicts the key parameters of the frequency and duty ratio measured by experiment well. Finally, on the basis of simplifying and solution of the pulse blowing system’s mathematic model, the relationship between system’s frequency duty ratio and the dimensions of components is simply described with four algebraic equations. The system could be designed with specified frequency and duty ratio according to the four equations. This study provides theoretical basis for designing energy-saving air blowing system.展开更多
We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has ...We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.展开更多
This paper focuses on the simulation and test of the switched reluctance starter/generator systems. Through the emulational analysis of the initial starting torque, the optimal turn-on section of the power switches is...This paper focuses on the simulation and test of the switched reluctance starter/generator systems. Through the emulational analysis of the initial starting torque, the optimal turn-on section of the power switches is discovered. The fundamental theory of the generating operation is analyzed with the linearity model, and a new method is presented based on voltage pulse width modulation for the generating mode control. Through the steady-state and optimized emulation of the output power and system efficiency, the optimizational control approach for the generating mode over a wide speed range is introduced. At last, the test of the 3KW prototype system shows that the dynamic and static performance of this system is fine.展开更多
文摘BACKGROUND Knee and hip osteoarthritis affects millions of people around the world and is expected to rise even more in frequency as the population ages.Joint arthroplasty is the surgical management of choice in these articulations.Heterotopic ossi-fication and radiolucent lines formation are two frequent problems faced in hip and knee replacements respectively.Some studies show that the usage of pulsed lavage may prevent their formation.AIM To compare pulsed lavage to standard lavage in joint arthroplasty.METHODS PubMed,Cochrane,and Google Scholar(page 1-20)were searched till December 2023.Only comparative studies were included.The clinical outcomes evaluated were the heterotopic ossification formation in hip replacements,radiolucent lines formation,and functional knee scores in knee replacements.RESULTS Four studies met the inclusion criteria and were included in this meta-analysis.Pulsed lavage was shown to reduce the formation of radiolucent lines(P=0.001).However,no difference was seen in the remaining outcomes CONCLUSION Pulsed lavage reduced the formation of radiolucent lines in knee replacements.No difference was seen in the remaining outcomes.Furthermore,the clinical significance of these radiolucent lines is poorly understood.Better conducted randomized controlled studies and cost-effectivity studies are needed to reinforce these findings.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
基金supported by JSPS KAKENHI(JP19K22187)Foundation for the Promotion of Science&Engineering for financial supportthe Japan International Cooperation Agency(JICA)and Otsuka Toshimi Scholarship Foundation(21-S58 and 22-S30)for kindly providing scholarships.
文摘The synthesis of gold nanoparticles(Au NPs)was carried out by utilising the pulsed laser ablation in liquids(PLAL)method with a microchip laser(MCL)system.This portable system features low power consumption and a giant-pulse laser.Aqueous solutions with and without the surfactant poly(N-vinyl-2-pyrrolidone)(PVP)were used for laser ablation of a bulk gold rod to achieve the successful formation of a colloidal solution of Au NPs.The gas bubbles formed by heating the aqueous medium around the surface of the gold target significantly reduced the efficiency of Au NP ablation.This effect was more pronounced and prolonged in high-viscosity solutions,hindering energy transfer from subsequent laser pulses to the target.Additionally,it was suggested that the chain length of PVP does not affect either the size of the Au NPs or the ablation efficiency.Videography experiments were conducted to explore the ablation mechanism employed by the MCL system.The relatively short pulse duration of the MCL system may contribute to the formation of NPs with consistent size,which were suppressed to grow in significantly smaller cavitation bubbles with short lifetimes.
基金Project(51371114)supported by the National Natural Science Foundation of ChinaProject(2012CB619600)supported by the National Basic Research Program of China+1 种基金Project(10SG15)supported by the Dawn Program of Shanghai Education Commission,ChinaProject(12XD1402800)supported by Shanghai Science and Technology Committee,China
文摘The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition.
文摘Vibrations or dither's are features of the PWM servo control system in their steady outputs. On the grounds of analyses and experiments of a PWM pneumatic servo control system, the paper puts forward four varieties of PWM modulation methods, and concludes on the relationship between dithers and the different methods, and then discusses the influence of friction to the dithers. Results from experiments regarding the dynamic and static responses on the given system support the theories presented.
文摘The properties and the design of PWM systems are discussed. The relations among the orifice areas of the valves, initial times and the rate of piston areas are deduced. Also a PWM system is designed and some experiments are done. The experiment results agree with those of theory analyses. It can be shown that the relations are correct and the conclusion of theory analyses is reasonable.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.61074052 and No.61072032). Herschel Rabitz acknowledges the support from Army Research Office (ARO).
文摘We explores Hamiltonian reduction in pulse-controlled finite-dimensional quantum systems with near-degenerate eigenstates. A quantum system with a non-degenerate ground state and several near-degenerate excited states is controlled by a short pulse, and the objective is to maximize the collective population on all excited states when we treat all of them as one level. Two cases of the systems are shown to be equivalent to effective two-level systems. When the pulse is weak, simple relations between the original systems and the reduced systems are obtained. When the pulse is strong, these relations are still available for pulses with only one frequency under the first-order approximation.
基金High Level Talented Person Funded Project of Hebei Province(No.C2013005003)Excellent Experts for Going Abroad Training Program of Hebei Province(No.10215601D)
文摘The hose pulse testing bench generally uses electro-hydraulic servo system. It occupies little space, tracks signals fast and has simple structure, and therefore it is widely used in industrial control field. However, there are lots of problems such as little accuracy and instability caused by slow response of hydraulic and various interference factors. Simple proportional integra- tion derivatiation (PID) control method of traditional pulse bench is simple in principle, but it is difficult in parameter adjust- ment. According to the special requirements of the control system, a PID method based on fuzzy control is proposed in the pa- per. This method not only retains the advantages of the conventional control system, but also ameliorates the drawbacks of parameter uncertainty, instability and lag. It has been testified that the method is practicable and can improve the precision and adaptation.
基金supported by a 2-Year Research Grant of Pusan National University,Korea
文摘The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.
文摘BACKGROUND Cardiogenic shock (CS) secondary to acute myocardial infarction (AMI) complicates management of the condition, and often leads to poor prognosis. Prompt and accurate monitoring of cardiovascular and accompanying hemodynamic changes is crucial in achieving adequate management of the condition. Advances in technology has availed procedures such as pulse index continuous cardiac output (PiCCO), which can offer precise monitoring of cardiovascular functions and hemodynamic parameters. In this study, PiCCO is evaluated for its potential utility in improving management and clinical outcomes among elderly patients with AMI complicated by CS. AIM To assess whether use of the PiCCO system can improve clinical outcomes in elderly patients with AMI complicated by CS.METHODS Patients from emergency intensive care units (EICU) or coronary care units (CCU) were randomized to receive PiCCO monitoring or not. The APACHE II score, SOFA score, hs-TnI, NT-proBNP, PaO2/FiO2 ratio and lactate levels on day 1, 3 and 7 after treatment were compared. The infusion and urine volume at 0-24 h, 24-48 h and 48-72 h were recorded, as were the cardiac index (CI), extravascular lung water index (EVLWI), intrathoracic blood volume index (ITBVI) and global end diastolic volume index (GEDVI) at similar time intervals. RESULTS Sixty patients with AMI complicated by CS were included in the study. The PiCCO group had a significantly lower APACHE II score, SOFA score, hs-TnI and NT-proBNP levels on day 1, 3 and 7 after treatment. The infusion and urine volume during 0-24 h in the PiCCO group were significantly greater, and this group also showed significantly higher ADL scores. Furthermore, the PiCCO group spent lesser days on vasoactive agents, mechanical ventilation, and had a reduced length of stay in EICU/CCU. Additionally, the CI was significantly higher at 48 h and 72 h in the PiCCO group compared with that at 24 h, and the EVLWI, ITBVI and GEDVI were significantly decreased at 48 h and 72 h. CONCLUSION Applying the PiCCO system could improve the clinical outcomes of elderly patients with AMI complicated by CS.
文摘The highpower pulsed power supply system for the magnetic field of the HL-2A Tokamak is described in this paper. The total output power of its eight magnetic field power supply units of nearly 250 MW. Their highest DC output voltage and current are 3510 V and 45 kA, respectively. All the units are operated in a pulsed mode. The pulse duration is 5 s, and the cyclic period is 15 min. The power supply system consists mainly of pulsed flywheel motor generators, rectifying transformers, thyristor converters, diode rectifiers and switches. The system incorporates many key technologies-supply equalization with two generators and four diode bridges, constant-angle phase triggers with a wide frequency range, current equalization, a status detector for the high current 6-phase converter, and advanced monitoring based on a programmable logic computer and engineering parameter measurement. The experimental results show that the performance of the power supply system satisfies the requirements of HL-2A experiments very well.
文摘A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.
基金supported by the Department of Edu-cation of Liaoning Province, China (No. 2008T089).
文摘The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied. The results indicated that the cementite was decomposed in a short time by high current density electropulsing. With increasing electropulsing time, the in situ nucleation of graphite in cementite was accompanied with the quick decomposition of cementite. The dislocation accumulation adjacent to the cementite and the quick diffusion of carbon atom by electropulsing were main reasons for the quick decomposition of cementite. The in situ nucleation of graphite in the cementite resulted from the dislocation climbing crossing the cementite lamellae.
基金supported by National Natural Science Foundation of China (50805051)Guangdong Provincial Science and Technology Project (2008B010400041)
文摘To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paralleled units to increase the system output capability. The hierarchical control system is adopted to improve the reliability and flexibility of the high power arc plasma inverter. To ensure the reliable turn on and off of the IGBT module in each building block unit, a special pulse drive circuit is designed by using pulse transformer. The experimental result indicates that the high power arc plasma inverter system can transfer 300 kW arc plasma energy reliably with high efficiency.
文摘The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.
文摘In this letter, with the synthesis of usual cross-correlation detecting method andchaotic detecting method, a new detecting system for the weak periodic pulse signal is constituted,in which the two methods can play respective preponderance. Theoretical analyses and simulationstudies have shown that the detecting system is very sensitive to the periodic pulse signal understrong noise background and has exceedingly powerful capability of suppressing complex noise.
基金We gratefully acknowledge support from the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20151486).
文摘Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance.
文摘Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure could be reduced by decreasing the ratio of length to diameter of nozzle. The friction between high speed air and pipe wall would be reduced if the nozzle is designed to be converging shape comparing with straight shape. But the volume flow and pressure, discussed in these studies, do not describe energy loss of the blowing system directly. Pneumatic power is an innovative principle to estimate pneumatic system’s energy consumption directly. Based on the above principle, a pulse blowing method is put forward for saving energy. A flow experiment is carried out, in which the high speed air flows from the pulse blowing system and continuous blowing system respectively to a plate with grease on top. Supply pressure and the volume of air used for removing the grease are measured to calculate energy consumption. From the experiment result, the pulse blowing system performs to conserve energy comparing with the continuous blowing system. The frequency and duty ratio of pulse flow influence the blowing characteristic. The pulse blowing system performs to be the most efficient at the specified frequency and duty ratio. Then a pneumatic self-oscillated method based on air operated valve is put forward to generate pulse flow. A simulation is made about dynamic modeling the air operated valve and calculating the motion of the valve core and output pressure. The simulation result verifies the system to be able to generate pulse flow, and predicts the key parameters of the frequency and duty ratio measured by experiment well. Finally, on the basis of simplifying and solution of the pulse blowing system’s mathematic model, the relationship between system’s frequency duty ratio and the dimensions of components is simply described with four algebraic equations. The system could be designed with specified frequency and duty ratio according to the four equations. This study provides theoretical basis for designing energy-saving air blowing system.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB808101)the Funds from the Chinese Academy of Sciences,and the National Natural Science Foundation of China(Grant Nos.11127901,10734080,61221064,60908008,and 61078037)
文摘We theoretically study the nonlinear compression of a 20-rnJ, 1030-nm picosecond chirped pulse from the thin-disk amplifier in a krypton gas-filled hollow-core fiber. The chirp from the thin-disk amplifier system has little influence on the initial pulse, however, it shows an effect on the nonlinear compression in hollow-core fiber. We use a large diameter hollow waveguide to restrict undesirable nonlinear effects such as ionization; on the other hand, we employ suitable gas pressure and fiber length to promise enough spectral broadening; with 600-μm, 6-bar (1 bar = 105 Pa), 1.8-m hollow fiber, we obtain 31.5-fs pulse. Moreover, we calculate and discuss the optimal fiber lengths and gas pressures with different initial durations induced by different grating compression angles for reaching a given bandwidth. These results are meaningful for a compression scheme from picoseconds to femtoseconds.
文摘This paper focuses on the simulation and test of the switched reluctance starter/generator systems. Through the emulational analysis of the initial starting torque, the optimal turn-on section of the power switches is discovered. The fundamental theory of the generating operation is analyzed with the linearity model, and a new method is presented based on voltage pulse width modulation for the generating mode control. Through the steady-state and optimized emulation of the output power and system efficiency, the optimizational control approach for the generating mode over a wide speed range is introduced. At last, the test of the 3KW prototype system shows that the dynamic and static performance of this system is fine.