Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and...Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process.展开更多
The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, ...The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production.展开更多
The work is devoted to numerical simulation of pulverized-coal combustion processes in the vortex furnace which is a prospective design of a boiler unit for thermal power plants. New modification of this design charac...The work is devoted to numerical simulation of pulverized-coal combustion processes in the vortex furnace which is a prospective design of a boiler unit for thermal power plants. New modification of this design characterized by additional tangential-injection nozzle located at the bottom of combustion chamber has been studied. Numerical results for the case of Siberian brown coal combustion in this vortex furnace with dual-port loading are presented, including 3-D aerodynamic structure, the fields of temperatures, radiated heat fluxes, species and dispersed phase concentrations, and NOx emissions.展开更多
The two-dimensional steady-state discrete phase mathematical model is developed to analyze gas-particle flow and combustion characteristics of coal particles, as well as components concentration and temperature distri...The two-dimensional steady-state discrete phase mathematical model is developed to analyze gas-particle flow and combustion characteristics of coal particles, as well as components concentration and temperature distribu- tion of coal gas in the process of pulverized coal injection of blast furnace raceway. The results show that a great deal of coal gas discharges on the top of raceway away from the tuyere, and the residence time of coal particles in the re- gion of blowpipe and tuyere is 20 ms or so and 50 ms when it reaches raceway boundary. The pressure is the highest at the bottom of raceway and the maximal temperature is about 2 423 K. The char combustion is mainly carried out in the raceway and the maximum of char burn-out rate attains 3× 10-4 kg/s.展开更多
Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignit...Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.展开更多
The efficiency of coal combustion is an important factor for the blast furnace process.The influence of low xO/xC on coal combustion performance under nitrogen free blast furnace condition was researched through the s...The efficiency of coal combustion is an important factor for the blast furnace process.The influence of low xO/xC on coal combustion performance under nitrogen free blast furnace condition was researched through the self-developed pulverized coal burning device.The results show that the coal combustion rate reduces with xO/xC decreasing,and the combustion rate of bituminous coal is higher than that of anthracite.The coal combustion rate ascends with the rise of volatile matter,but when volatile matter of pulverized coal is more than 18%,the combustion rates will not increase correspondingly.Small amount of CaCO3 and CO2 additions can promote coal combustion,and the effect of CaCO3 is more apparent,which can increase the pulverized coal combustion rate by 15%-18% or so.展开更多
Combustion behavior of single pulverized coals(PCs)and co-combustion characteristics of anthracite(AT)and bituminite(BT)blends with 20 wt.%volatile were studied by thermogravimetric experiments.The results indicated t...Combustion behavior of single pulverized coals(PCs)and co-combustion characteristics of anthracite(AT)and bituminite(BT)blends with 20 wt.%volatile were studied by thermogravimetric experiments.The results indicated that reaction characteristics of PCs were closely related to their functional group structure and consequently,the pyrolysis of PCs with highly active functional groups initiated at lower temperatures.It was also noticed that the discrepancy of functional group structures between AT and BT might impair their interaction during combustion.The early exhaust of BT at low temperatures would possibly lead to an independent combustion of volatile and residual carbon and eventually the inefficient combustion of their blend.However,the mixing of AT and BT with similar functional group structures was more likely to achieve blends with superior combustion property.Simultaneously,non-isothermal kinetic analysis mani-fested that the combustion of blends followed random pore model(RPM),and therefore,the parameters calculated by RPM were more accurate to describe their combustion behavior.The kinetic calculation results showed that the activation energy required for decomposition of blends in early combustion stage was much lower owing to the excellent activity of volatile,while residual carbon with stable aromatic hydrocarbon demanded more energy to initiate its combustion.展开更多
The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and c...The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.展开更多
Substantial semi-coke has been produced through the industrialized low-temperature pyrolysis process,which has great potential as an alternative fuel for pulverized coal injection(PCI)and iron ore sintering.X-ray diff...Substantial semi-coke has been produced through the industrialized low-temperature pyrolysis process,which has great potential as an alternative fuel for pulverized coal injection(PCI)and iron ore sintering.X-ray diffraction,Raman spectroscope,and thermal analysis were used to compare the carbon chemical structure and combustion reactivity of semi-coke,pulverized coal,and coke breeze.The results show that the average volatile matter content in 46 types of semi-cokes is 8.94 wt.%.The fluctuation range of the characteristic parameters of the semi-coke chemical structure is d_(002)=(0.352–0.379)nm and A_(D1)/A_(G)=(2.51–7.92),while the fluctuation range of the characteristic parameters of pulverized coal is d_(002)=(0.348–0.373)nm and A_(D1)/A_(G)=(1.71–9.03)(where d_(002)means the interlayer spacing between the aromatic planes,and A_(D1)/A_(G)is an index that characterizes the degree of disorder of the char structure through the area ratio of the defect peak band D1 to the perfect graphite peak band G);the overlap between these ranges is relatively high.Contrarily,the fluctuation range of the characteristic parameters of coke breeze is d_(002)=(0.343–0.350)nm and A_(D1)/A_(G)=(0.75–2.51),which is markedly different from that of semi-coke.Semi-coke combustion reactivity is close to that of pulverized coal,but considerably better than that of coke breeze.In terms of chemical structure and combustion reactivity,semi-coke can be used as an alternative fuel for PCI;however,when used for sintering alternative fuel,matching of the heat supply and demand in the later sintering stage must be scrupulously analyzed.展开更多
Pulverized coal injection technique has been widely used as a means of reducing coke consumption during ironmaking process.Owing to the increasing shortage of fossil fuels,other substitutes such as biomass,plastic,and...Pulverized coal injection technique has been widely used as a means of reducing coke consumption during ironmaking process.Owing to the increasing shortage of fossil fuels,other substitutes such as biomass,plastic,and waste tires have been studied in recent years.Coke breeze as one of the by-products of coking industries has been investigated as a substitute for partial pulverized coals.The combustion characteristics of blended fuels were estimated based on the flammability index C and the combustion characteristic index S.For different coke breeze additions,the combustion was divided into two stages,and the apparent kinetic parameters of the two stages were estimated by fitting the experimental data to the shrinkage reaction model and shrinkage diffusion model,respectively.Results showed that with the increase in coke breeze addition from 15% to 60%,the indexes C and S decrease,and the activation energy of the first stage remains almost constant,while that of the last stage increases from 16.89 up to 67.18 kJ mol^(-1),which indicates that adding coke breeze decreases the combustion efficiency of pulverized coal.Comparing the combustion and kinetic parameters under different coke breeze addition conditions,the optimal addition amount is suggested to be within 15%.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074086,51974073,52074072,52074074)the Fundamental Research Funds for the Central Universities,China(No.N2225039)the Liaoning Provincial Natural Science Foundation of China(No.2019-MS-132)。
文摘Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process.
基金support of this research on the mechanism of enhancing the performance of composite pellets_made from limonite(Project No.KKS0202152010,202101AT070083)National Natural Science Foundation of China(No.52104351)+1 种基金the Yunnan Fundamental Research Projects(No.202301AT070795,202101AU070088)the author Lei Gao would like to acknowledge Yunnan Province Xingdian Talent Support Plan Project.
文摘The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production.
文摘The work is devoted to numerical simulation of pulverized-coal combustion processes in the vortex furnace which is a prospective design of a boiler unit for thermal power plants. New modification of this design characterized by additional tangential-injection nozzle located at the bottom of combustion chamber has been studied. Numerical results for the case of Siberian brown coal combustion in this vortex furnace with dual-port loading are presented, including 3-D aerodynamic structure, the fields of temperatures, radiated heat fluxes, species and dispersed phase concentrations, and NOx emissions.
基金Item Sponsored by National Natural Science Foundation of China and Shanghai Baosteel Group Co Ltd United Research Foundation(50374085)
文摘The two-dimensional steady-state discrete phase mathematical model is developed to analyze gas-particle flow and combustion characteristics of coal particles, as well as components concentration and temperature distribu- tion of coal gas in the process of pulverized coal injection of blast furnace raceway. The results show that a great deal of coal gas discharges on the top of raceway away from the tuyere, and the residence time of coal particles in the re- gion of blowpipe and tuyere is 20 ms or so and 50 ms when it reaches raceway boundary. The pressure is the highest at the bottom of raceway and the maximal temperature is about 2 423 K. The char combustion is mainly carried out in the raceway and the maximum of char burn-out rate attains 3× 10-4 kg/s.
基金support from the Allocated Section of the Basic Fund for the Scientific Research and Operation of Central Universities of China (No.2009KH10)
文摘Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF.
基金Item Sponsored by National Basic Research Program of China(2012CB720401)National Key Technology Research and Development Program in 12th Five-Year Plan of China(2011BAC01B02)National Natural Science Foundation of China(51134008)
文摘The efficiency of coal combustion is an important factor for the blast furnace process.The influence of low xO/xC on coal combustion performance under nitrogen free blast furnace condition was researched through the self-developed pulverized coal burning device.The results show that the coal combustion rate reduces with xO/xC decreasing,and the combustion rate of bituminous coal is higher than that of anthracite.The coal combustion rate ascends with the rise of volatile matter,but when volatile matter of pulverized coal is more than 18%,the combustion rates will not increase correspondingly.Small amount of CaCO3 and CO2 additions can promote coal combustion,and the effect of CaCO3 is more apparent,which can increase the pulverized coal combustion rate by 15%-18% or so.
基金supported by the National Natural Science Foundation of China(51874171,51604148,51974154 and 52074150)Liaoning Provincial Natural Science Foundation Guiding Program of China(2019-ZD-0273).
文摘Combustion behavior of single pulverized coals(PCs)and co-combustion characteristics of anthracite(AT)and bituminite(BT)blends with 20 wt.%volatile were studied by thermogravimetric experiments.The results indicated that reaction characteristics of PCs were closely related to their functional group structure and consequently,the pyrolysis of PCs with highly active functional groups initiated at lower temperatures.It was also noticed that the discrepancy of functional group structures between AT and BT might impair their interaction during combustion.The early exhaust of BT at low temperatures would possibly lead to an independent combustion of volatile and residual carbon and eventually the inefficient combustion of their blend.However,the mixing of AT and BT with similar functional group structures was more likely to achieve blends with superior combustion property.Simultaneously,non-isothermal kinetic analysis mani-fested that the combustion of blends followed random pore model(RPM),and therefore,the parameters calculated by RPM were more accurate to describe their combustion behavior.The kinetic calculation results showed that the activation energy required for decomposition of blends in early combustion stage was much lower owing to the excellent activity of volatile,while residual carbon with stable aromatic hydrocarbon demanded more energy to initiate its combustion.
基金Item Sponsored by National Key Technology Research and Development Programin 11th Five-Year Plan of China(2008BAB32B05)
文摘The combustion process of pulverized coal was investigated by non-isothermic integral thermogravimetry. The thermogravimetry curves were fitted by the Coats-Redferm approximation function, and kinetic parameters and characteristic temperatures were obtained. The optimal mixing ratio and particle size can be ascertained. The characteristic temperature of pulverized coal can be obtained from the thermogravimetry curve, and the combustion of coal can be divided into homogeneous and heterogeneous combustion according to the differential thermal analysis curve. The activation energy of a single type of coal ranking from low to high is as follows: bituminous coal, meager-lean coal, and anthracite. In the first mixing method, with more low-price meager-lean coal B replacing high price anthracite A, the activation energy slightly decreases; with more bituminous coal replacing meager-lean coal, total tendency makes a declining of activation. In the later mixing method, with an increase in particle size, a declining activation energy can be seen in total tendency.
基金thank the National Natural Science Foundation of China(Nos.51374166,51704224)for funding this research.
文摘Substantial semi-coke has been produced through the industrialized low-temperature pyrolysis process,which has great potential as an alternative fuel for pulverized coal injection(PCI)and iron ore sintering.X-ray diffraction,Raman spectroscope,and thermal analysis were used to compare the carbon chemical structure and combustion reactivity of semi-coke,pulverized coal,and coke breeze.The results show that the average volatile matter content in 46 types of semi-cokes is 8.94 wt.%.The fluctuation range of the characteristic parameters of the semi-coke chemical structure is d_(002)=(0.352–0.379)nm and A_(D1)/A_(G)=(2.51–7.92),while the fluctuation range of the characteristic parameters of pulverized coal is d_(002)=(0.348–0.373)nm and A_(D1)/A_(G)=(1.71–9.03)(where d_(002)means the interlayer spacing between the aromatic planes,and A_(D1)/A_(G)is an index that characterizes the degree of disorder of the char structure through the area ratio of the defect peak band D1 to the perfect graphite peak band G);the overlap between these ranges is relatively high.Contrarily,the fluctuation range of the characteristic parameters of coke breeze is d_(002)=(0.343–0.350)nm and A_(D1)/A_(G)=(0.75–2.51),which is markedly different from that of semi-coke.Semi-coke combustion reactivity is close to that of pulverized coal,but considerably better than that of coke breeze.In terms of chemical structure and combustion reactivity,semi-coke can be used as an alternative fuel for PCI;however,when used for sintering alternative fuel,matching of the heat supply and demand in the later sintering stage must be scrupulously analyzed.
基金supports from the National Natural Science Foundation of China(Nos.51604148,51874171,and 51974154).
文摘Pulverized coal injection technique has been widely used as a means of reducing coke consumption during ironmaking process.Owing to the increasing shortage of fossil fuels,other substitutes such as biomass,plastic,and waste tires have been studied in recent years.Coke breeze as one of the by-products of coking industries has been investigated as a substitute for partial pulverized coals.The combustion characteristics of blended fuels were estimated based on the flammability index C and the combustion characteristic index S.For different coke breeze additions,the combustion was divided into two stages,and the apparent kinetic parameters of the two stages were estimated by fitting the experimental data to the shrinkage reaction model and shrinkage diffusion model,respectively.Results showed that with the increase in coke breeze addition from 15% to 60%,the indexes C and S decrease,and the activation energy of the first stage remains almost constant,while that of the last stage increases from 16.89 up to 67.18 kJ mol^(-1),which indicates that adding coke breeze decreases the combustion efficiency of pulverized coal.Comparing the combustion and kinetic parameters under different coke breeze addition conditions,the optimal addition amount is suggested to be within 15%.