Resonance lines are extensively used to diagnose electronic temperature Te and ions distribution. However, the analysis of the x-ray spectroscopy emitted from plasmas produced by a ns laser Jsually needs the help of a...Resonance lines are extensively used to diagnose electronic temperature Te and ions distribution. However, the analysis of the x-ray spectroscopy emitted from plasmas produced by a ns laser Jsually needs the help of a code or some assumptions. In this paper, a diagnostic idea of using line-pairs emitted from a doubly-excited state is proposed. By using the method presented in this paper, Te and the fractional population ratio of bare nuclei and H-like ions are directly obtained from the emission intensity ratios.展开更多
The superconducting magnet of Central Solenoid(CS) model coil of China Fusion Engineering Test Reactor(CFETR) is made of Nb_3Sn/Nb Ti cable-in-conduit conductor(CICC),and operated by forced-flow cooling with a l...The superconducting magnet of Central Solenoid(CS) model coil of China Fusion Engineering Test Reactor(CFETR) is made of Nb_3Sn/Nb Ti cable-in-conduit conductor(CICC),and operated by forced-flow cooling with a large amount of supercritical helium.The cryogenic circulation pump is analyzed and considered to be effective in achieving the supercritical helium(SHe) circulation for the forced-flow cooled(FFC) CICC magnet.A distributed system will be constructed for cooling the CFETR CS model coil.This paper presents the design of FFC process for the CFETR CS model coil.The equipment configuration,quench protection in the magnet and the process control are presented.展开更多
With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in po...With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved.展开更多
When regulating a pipe network according to user demand,hydraulic balance and power consumption are crucial factors for a multi-source looped-pipe network applying distributed variable-speed pumps compared to the conv...When regulating a pipe network according to user demand,hydraulic balance and power consumption are crucial factors for a multi-source looped-pipe network applying distributed variable-speed pumps compared to the conventional central circulating pump system.In this paper,the influence of the fill point on power consumption and hydraulic balance of the multi-source looped-pipe network was studied.A mathematical model for electricity energy consumption analysis was built and calculated for a large sized looped-pipe network with multiple heat sources and distributed variable-speed pumps.The hydraulic calculation models of each single element,such as pipe,distribution pump,valve,replenishment pump,heat source and substation,were built.A case located in Dezhou city,China was analyzed.The results showed that:the maximum power saving(39.2%)could be achieved when each heat source had its own fill point,but the heat sources would not meet their design flows;to meet the design flows of all the heat sources,only one fill point should be necessarily located near the heat source with the lowest flow rate to get the expected hydraulic stability and energy saving.展开更多
文摘Resonance lines are extensively used to diagnose electronic temperature Te and ions distribution. However, the analysis of the x-ray spectroscopy emitted from plasmas produced by a ns laser Jsually needs the help of a code or some assumptions. In this paper, a diagnostic idea of using line-pairs emitted from a doubly-excited state is proposed. By using the method presented in this paper, Te and the fractional population ratio of bare nuclei and H-like ions are directly obtained from the emission intensity ratios.
文摘The superconducting magnet of Central Solenoid(CS) model coil of China Fusion Engineering Test Reactor(CFETR) is made of Nb_3Sn/Nb Ti cable-in-conduit conductor(CICC),and operated by forced-flow cooling with a large amount of supercritical helium.The cryogenic circulation pump is analyzed and considered to be effective in achieving the supercritical helium(SHe) circulation for the forced-flow cooled(FFC) CICC magnet.A distributed system will be constructed for cooling the CFETR CS model coil.This paper presents the design of FFC process for the CFETR CS model coil.The equipment configuration,quench protection in the magnet and the process control are presented.
文摘With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved.
基金This work is supported by the National Program on Key Basic Research Project of China(973 Program)(Grant No.2014CB249201).
文摘When regulating a pipe network according to user demand,hydraulic balance and power consumption are crucial factors for a multi-source looped-pipe network applying distributed variable-speed pumps compared to the conventional central circulating pump system.In this paper,the influence of the fill point on power consumption and hydraulic balance of the multi-source looped-pipe network was studied.A mathematical model for electricity energy consumption analysis was built and calculated for a large sized looped-pipe network with multiple heat sources and distributed variable-speed pumps.The hydraulic calculation models of each single element,such as pipe,distribution pump,valve,replenishment pump,heat source and substation,were built.A case located in Dezhou city,China was analyzed.The results showed that:the maximum power saving(39.2%)could be achieved when each heat source had its own fill point,but the heat sources would not meet their design flows;to meet the design flows of all the heat sources,only one fill point should be necessarily located near the heat source with the lowest flow rate to get the expected hydraulic stability and energy saving.