In this study,the flow structure and effect of different pump rotational speeds on a centrifugal pump’s performance are experimentally and numerically investigated.The internal flow field pattern within the pump has ...In this study,the flow structure and effect of different pump rotational speeds on a centrifugal pump’s performance are experimentally and numerically investigated.The internal flow field pattern within the pump has been analyzed and discussed using the CFD technique.The numerical results are compared with experimental data under a wide range of operating conditions.The comparison results between them have indicated a considerable agreement.The pressure variations are gradually increasing from inlet to outlet impeller of the pump.The results note that when the impeller rotates near the tongue region,the pressure in this region was higher than in other parts.Also,the interaction between the impeller and volute tongue region is actually according to the impeller blades’relative position concerning the tongue region.Furthermore,the pressure and velocity variations within a centrifugal pump increase with rotational impeller speed.展开更多
The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In orde...The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In order to improve the anti-cavitation performance of the centrifugal pumps, variable-pitch inducers are placed upstream of the impeller. Because the rotational speeds directly affect the flow and the performance of the pump, it is essential to characterize the performance of the pump with a variable-pitch inducer at various rotational speeds. In this paper, the simulations and the experimental tests of a centrifugal pump with a variable-pitch inducer are designed and carried out under various rotational speed conditions. Navier-Stokes equations, coupled with a Reynolds average simulation approach, are used in the simulations. In the experimental tests, the external and anti-cavitation performances of the pump are investigated in a closed system. The following results are obtained from the simulations. Firstly, the velocity in the passage of the inducer rises with the increase of the rotational speed. Secondly, the static pressure escalates on the inducer and the impeller with the increase of the rotational speed. Thirdly, the static pressure distribution on the inducer and the impeller is asymmetric. Fourthly, the anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Additional results are gathered from an analysis of the experiments. H-Q curves are similar parabolas at various rotational speeds, while η-Q curves are similar parabolas only when n ≤6 000 r/min. The anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Finally, the simulation results are found to be consistent with the experimental results.展开更多
文摘In this study,the flow structure and effect of different pump rotational speeds on a centrifugal pump’s performance are experimentally and numerically investigated.The internal flow field pattern within the pump has been analyzed and discussed using the CFD technique.The numerical results are compared with experimental data under a wide range of operating conditions.The comparison results between them have indicated a considerable agreement.The pressure variations are gradually increasing from inlet to outlet impeller of the pump.The results note that when the impeller rotates near the tongue region,the pressure in this region was higher than in other parts.Also,the interaction between the impeller and volute tongue region is actually according to the impeller blades’relative position concerning the tongue region.Furthermore,the pressure and velocity variations within a centrifugal pump increase with rotational impeller speed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51406185,51579225)the Third Level 151 Talent Project in Zhejiang Province
文摘The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In order to improve the anti-cavitation performance of the centrifugal pumps, variable-pitch inducers are placed upstream of the impeller. Because the rotational speeds directly affect the flow and the performance of the pump, it is essential to characterize the performance of the pump with a variable-pitch inducer at various rotational speeds. In this paper, the simulations and the experimental tests of a centrifugal pump with a variable-pitch inducer are designed and carried out under various rotational speed conditions. Navier-Stokes equations, coupled with a Reynolds average simulation approach, are used in the simulations. In the experimental tests, the external and anti-cavitation performances of the pump are investigated in a closed system. The following results are obtained from the simulations. Firstly, the velocity in the passage of the inducer rises with the increase of the rotational speed. Secondly, the static pressure escalates on the inducer and the impeller with the increase of the rotational speed. Thirdly, the static pressure distribution on the inducer and the impeller is asymmetric. Fourthly, the anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Additional results are gathered from an analysis of the experiments. H-Q curves are similar parabolas at various rotational speeds, while η-Q curves are similar parabolas only when n ≤6 000 r/min. The anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Finally, the simulation results are found to be consistent with the experimental results.