At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order ...At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order to eliminate the fluctuations and reduce problems, taking start pump, connect pump test under pressure in the water injection station installed the rotor frequency control system Changqing oil field developed. During the experiment, by progressively increasing the pressure pump to verify start pump with pressure feasibility test, the result shows when the pressure in the 0-25MPa pressure start and connect pump can be realized, and forecast the maximum pressure of the current start of the station with pressure pump. Start pump with pressure achieve the elimination of pressure fluctuations, provide the prerequisites about realizeing stable water injection pressure, and ultimately realize oil field water injection station to be automatic water injection laid a foundation.展开更多
Aiming at the high fuel consumption and use-cost of truck-mounted concrete pump , an energy-saving matching strategy of pumping system is presented and the experimental study is conducted.Since pumping system occupies...Aiming at the high fuel consumption and use-cost of truck-mounted concrete pump , an energy-saving matching strategy of pumping system is presented and the experimental study is conducted.Since pumping system occupies most resources of engine , the matching strategy between engine and main pump is analyzed to meet the load demand and reduce the engine rational speed drop.The testing method is established to measure the fuel consumption of engine under various working conditions , and the experimental data are analyzed to find the law of the fuel consumption of engine.The system performance can be improved by adjusting the system input value.Finally , the energy-saving matching strategy is established to reduce the fuel consumption of truck for unit workload , which provides a new approach for the energy-saving of truck-mounted concrete pump.展开更多
We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is a...We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is achieved at a pump power of 26 W,corresponding to an optical conversion efficiency of 20%and a slope efficiency of 21%.The Raman threshold for the diode pump power was only 0.92 W.The results reveal that in-band pumping by a wavelength-locked diode laser significantly enhances output power and efficiency of self-Raman lasers by virtue of improved pump absorption and relieved thermal loading.展开更多
Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly ...Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.展开更多
Background Off-pump coronary artery bypass grafting (CABG) is becoming increasingly popular world - wide. But it is not always feasible. Current cardioplegic techniques do not consistently avoid myocardial ischemic da...Background Off-pump coronary artery bypass grafting (CABG) is becoming increasingly popular world - wide. But it is not always feasible. Current cardioplegic techniques do not consistently avoid myocardial ischemic damage. So we use on pump beating heart technique to supplement off-pump CABG. Methods Based on 860 off-pump CABG cases between Aug 1998 to Aug 2000. From Aug 1999 to Aug 2000, 46 CABG cases were performed with on pump beating heart technique at Mani-pal Hospital Heart Foundation, Bangalore, India. All surgeries were performed through a median sternotomy. Exposure techniques were tailored to individual vessels and cardiac regions and local immobilization was performed with octopus. Vascular control was achieved with occluders and shunts. Total cardiopulmonary bypass (CPB) was established before or during CABG and normolthemia was used. Results Among 46 on -pump beating heart CABG patients, 26 patients used CPB before or during OP - CABG because of unstable hemodynamics and electric instability , 7 had very deep intramyocardial left anterior descending arteries, 5 patients had poor LV function (LVEF < 30 % ), 8 patients had cardiomegaly. The average number of grafts was 3.5. No operative mortality. Three patients had postoperative myocardial infarction. Anesthetic time 4. 5±1. 2 hours, extubation time 10±2. 5 hours, blood lost 680±230 mL, blood requirement 540±150 mL, preoperative LVEF 50. 3±13 % , postoperative LVEF 64. 1±14 %, ICU stay 1. 5±0. 5 days, hospi- tal stay 9.2±1.8 days. Conclusion Complete coronary revascularization with on pump beating heart is a supplement for off - pump CABG when it is not feasible. It eliminates intraoperative globe myocardial ischemia and avoids transient myocardial injury during cardioplegic arrest and myocardial reperfusion.展开更多
Objective Mutations in 23 S rRNA gene are known to be associated with macrolide resistance in Mycoplasma pneumoniae(M. pneumoniae). However, these mutations alone do not fully explain the high resistance rates in As...Objective Mutations in 23 S rRNA gene are known to be associated with macrolide resistance in Mycoplasma pneumoniae(M. pneumoniae). However, these mutations alone do not fully explain the high resistance rates in Asia. The aim of this study was to investigate other possible mutations involved in macrolide resistance in M. pneumoniae. Methods The whole genomes of 10 clinical isolates of M. pneumoniae with macrolide resistance were sequenced by Illumina Hi Seq2000 platform. The role of the macrolide-specific efflux transporter was assessed by efflux-pump inhibition assays with reserpine and carbonyl cyanide m-chlorophenyl-hydrazone(CCCP). Results A total of 56 single nucleotide polymorphisms(SNPs) were identified in 10 clinical isolates in comparison to the reference strains M129 and FH. Strikingly, 4 of 30 SNPs causing non-synonymous mutations were clustered in macrolide-specific efflux system gene mac B encoding macrolide-specific efflux pump protein of the ATP-binding cassette transporter family. In assays of the minimal inhibitory concentrations(MIC) of macrolide antibiotics in the presence of the efflux pump inhibitors caused a significant decrease of MICs, even under detectable levels in some strains. Conclusion Our study suggests that macrolide efflux pump may contribute to macrolide resistance in M. pneumoniae in addition to the common point mutations in 23 S r RNA gene.展开更多
As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrodin...As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrodinger equation is used to numerically compare supercontinuum(SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge(LWE), the power proportion in the long-wavelength region(PPL), and spectral flatness(SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of - 13 μm and PPL up to ~72%. For As2Se3 SCFs, the LWE of 15.5 μm and the highest PPL of ~ 87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.展开更多
By optimizing pump power ratio between 1st order backward pump and 2nd order forward pump on discrete Raman amplifier, we demonstrated over 2dB noise figure improvement without excessive non-linearity degradation.
The laser performance of a new Yb:germanophosphate(Yb:GP) glass is investigated. A maximum output power of 826 m W at 1063 nm is achieved with direct diode pumping at 976 nm. The wavelength is tuned from 1034.47 t...The laser performance of a new Yb:germanophosphate(Yb:GP) glass is investigated. A maximum output power of 826 m W at 1063 nm is achieved with direct diode pumping at 976 nm. The wavelength is tuned from 1034.47 to 1070.83 nm, corresponding to a tuning range of 36.36 nm. Thermal lens effects are investigated to optimize the optical cavity.展开更多
The vacuum system of today's tokamak devices is designed to meet the operational requirements of the experiments. The operation can be divided into five modes, (1) pumping down and leak detecting of the vacuum vess...The vacuum system of today's tokamak devices is designed to meet the operational requirements of the experiments. The operation can be divided into five modes, (1) pumping down and leak detecting of the vacuum vessel, (2) baking, (3) plasma-facing component (PFC) conditioning, (4)evacuating and controlling of the particles at plasma edge, (5) plasma discharge experiments.展开更多
We report a 307 W 1018 nm Yb-doped fiber laser pumped by a single 976 nm laser diode. The cavity slope efficiency is up to 75.9% and the amplified spontaneous emission is suppressed by 54 dB. The beam quality of the o...We report a 307 W 1018 nm Yb-doped fiber laser pumped by a single 976 nm laser diode. The cavity slope efficiency is up to 75.9% and the amplified spontaneous emission is suppressed by 54 dB. The beam quality of the output laser has an M2 factor of 1.17. Effective thermal management is considered to ensure the stable operation of our system. The power stability at the maximum output power level is measured during a period of0.5 h and the power fluctuation is less than 0.8%. This architecture can be an effective high brightness pump source of core-pumping high-power fiber amplifiers.展开更多
A 95 W Nd:YAG laser system pumped by a vertical cavity surface emitting laser(VCSEL) array is described.The laser contains an all-fiber-based seeder, an Nd:YAG regenerative amplifier, and a four-pass amplifier. Th...A 95 W Nd:YAG laser system pumped by a vertical cavity surface emitting laser(VCSEL) array is described.The laser contains an all-fiber-based seeder, an Nd:YAG regenerative amplifier, and a four-pass amplifier. The laser operates at 300 Hz with energies up to 317 m J. The beam has a top-hat intensity distribution. The temporal pulse shape is flat in time, and the pulse width can be adjusted in the range of 2–6 ns.展开更多
In this paper, aiming at practical dense wavelength division multiplexing (DWDM) system with ultralong fiber span, a simple co-fiber remotely pumped erbium-doped fiber amplifier (RP-EDFA) scheme is proposed to ext...In this paper, aiming at practical dense wavelength division multiplexing (DWDM) system with ultralong fiber span, a simple co-fiber remotely pumped erbium-doped fiber amplifier (RP-EDFA) scheme is proposed to extend span distance with simple configuration and low pump power. Equivalent noise figure of -6 dB is achieved under 300-mW pump power. Using the experiment results, numerical simulation of ultra-long span systems shows that for a 40 × 11.6-Gb/s transmission system, the RP-EDFA scheme can support transmission of 1760 km with a fiber span of 160 km. These results demonstrate the potential of the PR-EDFA scheme in ultra-long span transmission.展开更多
In this Letter, we report, for the first time to our knowledge, on a continuous-wave, singly resonant optical parametric oscillator using an Mg O: PPLN crystal pumped by an all-fiberized master-oscillator power ampli...In this Letter, we report, for the first time to our knowledge, on a continuous-wave, singly resonant optical parametric oscillator using an Mg O: PPLN crystal pumped by an all-fiberized master-oscillator power amplifier structured amplified random fiber laser. An idler output power of 2.46 W at 3752 nm is achieved with excellent beam quality, and the corresponding pump-to-idler conversion efficiency is 9.6% at room temperature. The idler output power exhibits a peak-to-peak power stability better than 12.7%, and the corresponding standard deviation is better than 3.6% RMS in about 20 min at the maximum output power. Meanwhile, other characteristics of the generated signal and idler laser are studied in detail and not only offered an effective guide in the research of optical parametric processes in the case of a continuous spectrum, but also broadened the range of random fiber laser applications.展开更多
Influences of water head variations on the performances of a prototype reversible pump turbine are experimentally studied in generating mode within a wide range of load conditions(from 25% to 96% of the rated power). ...Influences of water head variations on the performances of a prototype reversible pump turbine are experimentally studied in generating mode within a wide range of load conditions(from 25% to 96% of the rated power). The pressure fluctuations of the reversible pump turbine at three different water heads(with non-dimensional values being 0.48, 0.71 and 0.90) are measured and compared based on the pressure data recorded in the whole flow passage of the turbine. Furthermore, effects of monitoring points and load variations on the impeller-induced unstable behavior(e.g. blade passing frequency and its harmonics) are quantitatively discussed. Our findings reveal that water head variations play a significant role on the pressure fluctuations and their propagation mechanisms inside the reversible pump turbine.展开更多
Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dualpo...Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dualpolarization fiber lasers is presented here, which shows that the pump induced birefringence is a result of the interplay among pump induced refractive index change, laser dynamics, and anisotropy inside fiber lasers.For erbium-doped fiber lasers, pumping at 1480 nm is better than pumping at 980 nm in lower pump induced birefringence. Moreover, injection at 532 nm for an adequately long enough time can permanently reduce anisotropy and, hence, reduce pump induced birefringence.展开更多
The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperatur...The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber(SMF) connected with the optical carrier based microwave interferometry(OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.展开更多
In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We...In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We can observe that the metamaterial-based filter possesses a band-pass transmission when the electrical field is along y direction, and it possesses a low-pass transmission when the electrical field is along x direction. Our results demonstrate that the proposed filter can realize the switching between band-pass effect and low-pass effect by only changing the polarization direction of the incident electromagnetic wave. Moreover, the calculated surface current distributions are also used to analyze the switchable mechanism of the THz metamatrial filter. Therefore, the proposed THz wave filter has a potential application in THz wave communication systems.展开更多
In this Letter, we numerically simulate the generation of a 1–15 μm mid-infrared supercontinuum(SC) from a highly nonlinear Ge_(11.5)As24Se_(64.5)-based photonic crystal fiber(PCF). This ultra-broadband SC i...In this Letter, we numerically simulate the generation of a 1–15 μm mid-infrared supercontinuum(SC) from a highly nonlinear Ge_(11.5)As24Se_(64.5)-based photonic crystal fiber(PCF). This ultra-broadband SC is achieved in a100 mm long PCF pumped using 85 fs laser pulses operated at 3.1 μm and a peak pulse power of 3 k W. The proposed design offers a flat dispersion profile with two zero dispersion wavelengths. This broad and flat dispersion profile of the Ge_(11.5)As24Se_(64.5)PCF, combined with the high nonlinearity(2474 W-1km-1), generates an ultra-broadband SC.展开更多
文摘At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order to eliminate the fluctuations and reduce problems, taking start pump, connect pump test under pressure in the water injection station installed the rotor frequency control system Changqing oil field developed. During the experiment, by progressively increasing the pressure pump to verify start pump with pressure feasibility test, the result shows when the pressure in the 0-25MPa pressure start and connect pump can be realized, and forecast the maximum pressure of the current start of the station with pressure pump. Start pump with pressure achieve the elimination of pressure fluctuations, provide the prerequisites about realizeing stable water injection pressure, and ultimately realize oil field water injection station to be automatic water injection laid a foundation.
文摘Aiming at the high fuel consumption and use-cost of truck-mounted concrete pump , an energy-saving matching strategy of pumping system is presented and the experimental study is conducted.Since pumping system occupies most resources of engine , the matching strategy between engine and main pump is analyzed to meet the load demand and reduce the engine rational speed drop.The testing method is established to measure the fuel consumption of engine under various working conditions , and the experimental data are analyzed to find the law of the fuel consumption of engine.The system performance can be improved by adjusting the system input value.Finally , the energy-saving matching strategy is established to reduce the fuel consumption of truck for unit workload , which provides a new approach for the energy-saving of truck-mounted concrete pump.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20130453 and BK20130434)the National Natural Science Foundation of China(Grant No.11304271)
文摘We report an efficient continuous-wave self-Raman laser at 1176 nm based on a 20-mm-long composite YVO4/Nd:YVO4/YVO4 crystal and pumped by a wavelength-locked 878.9 nm diode laser.A maximum output power of 5.3 W is achieved at a pump power of 26 W,corresponding to an optical conversion efficiency of 20%and a slope efficiency of 21%.The Raman threshold for the diode pump power was only 0.92 W.The results reveal that in-band pumping by a wavelength-locked diode laser significantly enhances output power and efficiency of self-Raman lasers by virtue of improved pump absorption and relieved thermal loading.
文摘Recovering waste heat from industrial processes is bene ficial in order to reduce the primary energy demands and heat pumps can be used to this purpose.Absorption heat pumps are energy-saving and environment-friendly because use working fluids that do not cause ozone depletion and can reduce the global warming emissions.The hybrid heat pump processes combine the conventional vapor-compression and the absorption heat pump cycles.Studies about the simulations and modeling of hybrid heat pumps are few in literature.In this research a mathematical model for single effect absorption and hybrid heat pump is carried out with Chem Cad? 6.0.1.LiBr–H_2O is used as working fluid while electrolytic NRTL and electrolytes latent heat are used as thermodynamic model due to the better results.Binary parameters of activity coef ficients are regressed from experimental vapor pressure data while default constants are used for the solubility expressions.A design of heat pumps is developed and a new modeling of generator is analyzed.The coef ficient of performance of absorption heat pump and hybrid heat pump is equal to 0.7 and 0.83 respectively.For absorption heat pump a sensitivity analysis is carried out to evaluate the effect of temperature and pressure generator,the concentration of Li–Br solution on coef ficient of performance,cooling capacity and working fluid temperature.For hybrid heat pump,the different coef ficients of performance,the primary energy ratio,the generator heat,and the compressor power are analyzed for different values of compressor proportion.Results show that comparing the two systems the hybrid pump allows to save more primary energy,costs and carbon dioxide emissions with respect to absorption heat pump with the increasing of compressor proportion parameter.Future researches should focus on the construction of this heat pumps integrated in chemical processes as a biogas plant or trigeneration systems.
文摘Background Off-pump coronary artery bypass grafting (CABG) is becoming increasingly popular world - wide. But it is not always feasible. Current cardioplegic techniques do not consistently avoid myocardial ischemic damage. So we use on pump beating heart technique to supplement off-pump CABG. Methods Based on 860 off-pump CABG cases between Aug 1998 to Aug 2000. From Aug 1999 to Aug 2000, 46 CABG cases were performed with on pump beating heart technique at Mani-pal Hospital Heart Foundation, Bangalore, India. All surgeries were performed through a median sternotomy. Exposure techniques were tailored to individual vessels and cardiac regions and local immobilization was performed with octopus. Vascular control was achieved with occluders and shunts. Total cardiopulmonary bypass (CPB) was established before or during CABG and normolthemia was used. Results Among 46 on -pump beating heart CABG patients, 26 patients used CPB before or during OP - CABG because of unstable hemodynamics and electric instability , 7 had very deep intramyocardial left anterior descending arteries, 5 patients had poor LV function (LVEF < 30 % ), 8 patients had cardiomegaly. The average number of grafts was 3.5. No operative mortality. Three patients had postoperative myocardial infarction. Anesthetic time 4. 5±1. 2 hours, extubation time 10±2. 5 hours, blood lost 680±230 mL, blood requirement 540±150 mL, preoperative LVEF 50. 3±13 % , postoperative LVEF 64. 1±14 %, ICU stay 1. 5±0. 5 days, hospi- tal stay 9.2±1.8 days. Conclusion Complete coronary revascularization with on pump beating heart is a supplement for off - pump CABG when it is not feasible. It eliminates intraoperative globe myocardial ischemia and avoids transient myocardial injury during cardioplegic arrest and myocardial reperfusion.
基金supported by the grants from National Nature Science Foundation of China(81601778 and 81672062)the Beijing Natural Science Foundation(7152025)Beijing Talents Fund(2015000021469G192)
文摘Objective Mutations in 23 S rRNA gene are known to be associated with macrolide resistance in Mycoplasma pneumoniae(M. pneumoniae). However, these mutations alone do not fully explain the high resistance rates in Asia. The aim of this study was to investigate other possible mutations involved in macrolide resistance in M. pneumoniae. Methods The whole genomes of 10 clinical isolates of M. pneumoniae with macrolide resistance were sequenced by Illumina Hi Seq2000 platform. The role of the macrolide-specific efflux transporter was assessed by efflux-pump inhibition assays with reserpine and carbonyl cyanide m-chlorophenyl-hydrazone(CCCP). Results A total of 56 single nucleotide polymorphisms(SNPs) were identified in 10 clinical isolates in comparison to the reference strains M129 and FH. Strikingly, 4 of 30 SNPs causing non-synonymous mutations were clustered in macrolide-specific efflux system gene mac B encoding macrolide-specific efflux pump protein of the ATP-binding cassette transporter family. In assays of the minimal inhibitory concentrations(MIC) of macrolide antibiotics in the presence of the efflux pump inhibitors caused a significant decrease of MICs, even under detectable levels in some strains. Conclusion Our study suggests that macrolide efflux pump may contribute to macrolide resistance in M. pneumoniae in addition to the common point mutations in 23 S r RNA gene.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.61435003,61377042,61505024,and 61421002)Open Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks,China(Grant No.2015GZKF004)+1 种基金Open Found of Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,China(Grant No.SKLSFO2014-07)Open Fund of Science and Technology on Solid-State Laser Laboratory,China(Grant No.H04010501W2015000604)
文摘As2S3 and As2Se3 chalcogenide 3-bridges suspended-core fibers(SCFs) are designed with shifted zero-dispersion wavelengths(ZDWs) at around 1.5 μm, 2 μm, and 2.8 μm, respectively. A generalized nonlinear Schrodinger equation is used to numerically compare supercontinuum(SC) generation in these SCFs pumped at an anomalous dispersion region nearby their ZDWs. Evolutions of the long-wavelength edge(LWE), the power proportion in the long-wavelength region(PPL), and spectral flatness(SF) are calculated and analyzed. Meanwhile, the optimal pump parameters and fiber length are given with LWE, PPL, and SF taken into account. For As2S3 SCFs, SC from a 14 mm-long fiber with a ZDW of 2825 nm pumped at 2870 nm can achieve the longest LWE of - 13 μm and PPL up to ~72%. For As2Se3 SCFs, the LWE of 15.5 μm and the highest PPL of ~ 87% can be achieved in a 10 mm-long fiber with ZDW of 1982 nm pumped at 2000 nm. Although the As2Se3 SCFs can achieve much longer LWE than the As2S3 SCFs, the core diameter of As2Se3 SCFs will be much smaller to obtain a similar ZDW, leading to lower damage threshold and output power. Finally, the optimal parameters for generating SC spanning over different mid-IR windows are given.
文摘By optimizing pump power ratio between 1st order backward pump and 2nd order forward pump on discrete Raman amplifier, we demonstrated over 2dB noise figure improvement without excessive non-linearity degradation.
基金supported by the National Science Foundation of China(NSFC)under Grant Nos.11504394,61521093,and 61378030
文摘The laser performance of a new Yb:germanophosphate(Yb:GP) glass is investigated. A maximum output power of 826 m W at 1063 nm is achieved with direct diode pumping at 976 nm. The wavelength is tuned from 1034.47 to 1070.83 nm, corresponding to a tuning range of 36.36 nm. Thermal lens effects are investigated to optimize the optical cavity.
文摘The vacuum system of today's tokamak devices is designed to meet the operational requirements of the experiments. The operation can be divided into five modes, (1) pumping down and leak detecting of the vacuum vessel, (2) baking, (3) plasma-facing component (PFC) conditioning, (4)evacuating and controlling of the particles at plasma edge, (5) plasma discharge experiments.
基金supported in part by the National Key Research and Development Program of China(No.2016YFB0402201)the National Natural Science Foundation of China(Nos.U1330134,6130824,and61377062)+2 种基金the Natural Science Foundation of Shanghai(Nos.16ZR1440100 and 16ZR1440200)the Primary Research&Development Plan of Jiangsu(No.BE2016005-4)the Key Project of Science and Technology of Jiangsu(No.BE2014001-2)
文摘We report a 307 W 1018 nm Yb-doped fiber laser pumped by a single 976 nm laser diode. The cavity slope efficiency is up to 75.9% and the amplified spontaneous emission is suppressed by 54 dB. The beam quality of the output laser has an M2 factor of 1.17. Effective thermal management is considered to ensure the stable operation of our system. The power stability at the maximum output power level is measured during a period of0.5 h and the power fluctuation is less than 0.8%. This architecture can be an effective high brightness pump source of core-pumping high-power fiber amplifiers.
文摘A 95 W Nd:YAG laser system pumped by a vertical cavity surface emitting laser(VCSEL) array is described.The laser contains an all-fiber-based seeder, an Nd:YAG regenerative amplifier, and a four-pass amplifier. The laser operates at 300 Hz with energies up to 317 m J. The beam has a top-hat intensity distribution. The temporal pulse shape is flat in time, and the pulse width can be adjusted in the range of 2–6 ns.
文摘In this paper, aiming at practical dense wavelength division multiplexing (DWDM) system with ultralong fiber span, a simple co-fiber remotely pumped erbium-doped fiber amplifier (RP-EDFA) scheme is proposed to extend span distance with simple configuration and low pump power. Equivalent noise figure of -6 dB is achieved under 300-mW pump power. Using the experiment results, numerical simulation of ultra-long span systems shows that for a 40 × 11.6-Gb/s transmission system, the RP-EDFA scheme can support transmission of 1760 km with a fiber span of 160 km. These results demonstrate the potential of the PR-EDFA scheme in ultra-long span transmission.
文摘In this Letter, we report, for the first time to our knowledge, on a continuous-wave, singly resonant optical parametric oscillator using an Mg O: PPLN crystal pumped by an all-fiberized master-oscillator power amplifier structured amplified random fiber laser. An idler output power of 2.46 W at 3752 nm is achieved with excellent beam quality, and the corresponding pump-to-idler conversion efficiency is 9.6% at room temperature. The idler output power exhibits a peak-to-peak power stability better than 12.7%, and the corresponding standard deviation is better than 3.6% RMS in about 20 min at the maximum output power. Meanwhile, other characteristics of the generated signal and idler laser are studied in detail and not only offered an effective guide in the research of optical parametric processes in the case of a continuous spectrum, but also broadened the range of random fiber laser applications.
基金supported by the National Natural Science Foundation of China(Grant No.51506051)the Fundamental Research Funds for the Central Universities(Grant No.JB2015RCY04)+2 种基金the Open Research Fund Program of Key Laboratory of Fluid and Power Machinery(Xihua University)Ministry of Education(Grant No.szjj-2017-100-1-001)the Open Research Fund Program of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS16014)
文摘Influences of water head variations on the performances of a prototype reversible pump turbine are experimentally studied in generating mode within a wide range of load conditions(from 25% to 96% of the rated power). The pressure fluctuations of the reversible pump turbine at three different water heads(with non-dimensional values being 0.48, 0.71 and 0.90) are measured and compared based on the pressure data recorded in the whole flow passage of the turbine. Furthermore, effects of monitoring points and load variations on the impeller-induced unstable behavior(e.g. blade passing frequency and its harmonics) are quantitatively discussed. Our findings reveal that water head variations play a significant role on the pressure fluctuations and their propagation mechanisms inside the reversible pump turbine.
基金supported by the National Natural Science Foundation of China(Nos.11474133,61235005,and 61675091)the Natural Science Foundation of Guangdong Province of China(No.2014A030310419)
文摘Birefringence is critical in dual-polarization fiber-laser-based fiber-optic sensing systems, as it directly determines the beat frequency between the two polarizations. A study of pump induced birefringence in dualpolarization fiber lasers is presented here, which shows that the pump induced birefringence is a result of the interplay among pump induced refractive index change, laser dynamics, and anisotropy inside fiber lasers.For erbium-doped fiber lasers, pumping at 1480 nm is better than pumping at 980 nm in lower pump induced birefringence. Moreover, injection at 532 nm for an adequately long enough time can permanently reduce anisotropy and, hence, reduce pump induced birefringence.
基金supported by the U.S.Department of Energy,National Energy Technology Laboratory,Morgantown,WV,USA(No.DEFE0012272)the Joint Funds(NSFC-Henan)of the National Natural Science Foundation of China(No.U1204615)
文摘The high temperature liquid is injected into the micro-size capillary and its light propagation behavior is investigated. We focus on two different liquid pumping methods. The first method can pump the high temperature liquid tin into the micro-size capillary by using a high pressure difference system. After pumping, a single mode fiber(SMF) connected with the optical carrier based microwave interferometry(OCMI) system is used to measure different liquid tin levels in the micro-size capillary. The second method can pump the room temperature engine oil into the capillary by using a syringe pump. This method can avoid the air bubbles when the liquids are pumped into the capillary.
基金supported by the Major State Basic Research Development Program of China(No.2010CB934104)the Science and Technology Research Funding of State Cultural Relics Bureau Cultural Relics(No.20110135)+1 种基金the National Special Fund for the Development of Major Research Equipment and Instruments(No.2012YQ14000508)"985 Project"(No.0301-01402904)
文摘In this paper, we present the design, simulation, fabrication and characterization of a terahertz(THz) filter based on metamaterial consisting of the periodical double symmetric splits ring resonator(DS-SRR) array. We can observe that the metamaterial-based filter possesses a band-pass transmission when the electrical field is along y direction, and it possesses a low-pass transmission when the electrical field is along x direction. Our results demonstrate that the proposed filter can realize the switching between band-pass effect and low-pass effect by only changing the polarization direction of the incident electromagnetic wave. Moreover, the calculated surface current distributions are also used to analyze the switchable mechanism of the THz metamatrial filter. Therefore, the proposed THz wave filter has a potential application in THz wave communication systems.
基金the grants available by the India–Japan Cooperative Science Programme awarded jointly to MNIT Jaipur and KEIO University,Hiyoshi Campus,Japan (Project sanction number: DST/INT/JSPS/P-180/2014)
文摘In this Letter, we numerically simulate the generation of a 1–15 μm mid-infrared supercontinuum(SC) from a highly nonlinear Ge_(11.5)As24Se_(64.5)-based photonic crystal fiber(PCF). This ultra-broadband SC is achieved in a100 mm long PCF pumped using 85 fs laser pulses operated at 3.1 μm and a peak pulse power of 3 k W. The proposed design offers a flat dispersion profile with two zero dispersion wavelengths. This broad and flat dispersion profile of the Ge_(11.5)As24Se_(64.5)PCF, combined with the high nonlinearity(2474 W-1km-1), generates an ultra-broadband SC.