Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of ele...Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current.展开更多
In a gas circuit breaker,metal vapor resulting from electrode erosion is injected into the arc plasma.The arc then burns in a mixture of SF;and electrode vapor,which has properties significantly different from those o...In a gas circuit breaker,metal vapor resulting from electrode erosion is injected into the arc plasma.The arc then burns in a mixture of SF;and electrode vapor,which has properties significantly different from those of pure SF;.Thermodynamic properties and transport coefficients of thermal plasmas formed in SF;-copper vapor mixtures change as a function of temperature and pressure.The property that is mostly affected by the presence of copper is electrical conductivity,which is important in magnetohydrodynamic(MHD) analysis.In this study,the transport coefficients of SF;in the presence of 10 percent copper are considered as the basis of MHD simulation.Comparisons are made between the results during arc formation for pure SF;and SF;-Cu mixture in a medium voltage(MV) circuit breaker.According to the transport coefficients influenced by the SF;-Cu mixture,the distribution of the electric potential, temperature,electromagnetic force density and current density of the arc column are presented and discussed.Also,the arc stability and pinch effect near current zero with 3-D simulation are investigated,which is advantageous to improving the efficiency of arc plasma simulation.展开更多
基金Project(2007CB607603)supported by the National Basic Research Program of China
文摘Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current.
文摘In a gas circuit breaker,metal vapor resulting from electrode erosion is injected into the arc plasma.The arc then burns in a mixture of SF;and electrode vapor,which has properties significantly different from those of pure SF;.Thermodynamic properties and transport coefficients of thermal plasmas formed in SF;-copper vapor mixtures change as a function of temperature and pressure.The property that is mostly affected by the presence of copper is electrical conductivity,which is important in magnetohydrodynamic(MHD) analysis.In this study,the transport coefficients of SF;in the presence of 10 percent copper are considered as the basis of MHD simulation.Comparisons are made between the results during arc formation for pure SF;and SF;-Cu mixture in a medium voltage(MV) circuit breaker.According to the transport coefficients influenced by the SF;-Cu mixture,the distribution of the electric potential, temperature,electromagnetic force density and current density of the arc column are presented and discussed.Also,the arc stability and pinch effect near current zero with 3-D simulation are investigated,which is advantageous to improving the efficiency of arc plasma simulation.