期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Conjecture Concerning the Pure Exponential Diophantine Equation a^x+b^y=c^z 被引量:9
1
作者 Mao Hua LE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期943-948,共6页
Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a... Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r). 展开更多
关键词 pure exponential diophantine equation Number of solutions Completely determine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部