Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of...Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs.展开更多
To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing ac...To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.展开更多
Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance...Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).展开更多
Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technol...Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable.展开更多
Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusi...Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusion direction(ED).As the amount of Gd added to pure Mg increases,the basal texture tilts toward the ED and the distribution of c-axes of grains becomes randomized.Under tension,the strain hardening rates of all the materials decrease until fracture.However,under compression,the strain hardening rate increases in the early stage of deformation in pure Mg and Mg–5Gd,whereas it continuously decreases in Mg–15Gd.Pure Mg exhibits considerably high tension-compression yield asymmetry,with a compressive yield strength(CYS)to tensile yield strength(TYS)ratio of 0.4.In contrast,Mg–5Gd exhibits excellent yield symmetry with CYS/TYS of 0.9 and Mg–15Gd exhibits reversed yield asymmetry with CYS/TYS of 1.2.Underlying mechanisms of these drastically different Gd-addition-induced deformation behaviors of the materials are discussed in terms of the crystallographic distribution of grains and the relative activation stresses of basal slip,prismatic slip,pyramidal slip,and{10–12}twinning under tension and compression.展开更多
To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe...To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.展开更多
A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained a...A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained after 4 passes of equal channel angular pressing (ECAP).Tension–compression asymmetry in yield and work hardening behavior of UFG CP Ti were investigated by uniaxial tension and compression tests.The experimental results reveal that UFG CP Ti exhibits a relatively obvious tensioncompression asymmetry in yielding and work hardening behavior.The basal and prismaticslip are suppressed either for tension or compression,which is the easiest to activate.The tension twin system{1012}<1011> easily activated in compression deformation due to the prismatic fiber texture based on the Schmidt factor,consequently resulting in a lower yield strength under compression than tension.ECAP can improve the tension-compression asymmetry of CP Ti due to grain refinement.The interaction among the dislocations,grain boundaries and deformation twins are the main work hardening mechanisms for compression deformation,while the interaction between the dislocations and grain boundaries for tension deformation.Deformation twins lead to the higher work hardening under compression than tension.展开更多
The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life...The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.展开更多
Coconut (Cocos nucifera) milk-based ice cream is one of the innovative non-dairy milk products gaining popularity among consumers. The objective was to develop coconut milk-based ice cream incorporated with soursop (A...Coconut (Cocos nucifera) milk-based ice cream is one of the innovative non-dairy milk products gaining popularity among consumers. The objective was to develop coconut milk-based ice cream incorporated with soursop (Annona muricata) fruit puree and gum Arabic from Acacia senegal var. kerensis, conduct a sensory evaluation using descriptive tests by trained panelists (n = 9) then evaluate for consumer acceptability by semi trained panelists (n = 30). A seven-point hedonic scale for colour, taste, flavour, texture and overall acceptability was used. The data obtained was subjected to analysis of variance (ANOVA) and the means were separated to determine their significance differences. Principal Component Analysis (PCA) was done for factor reduction to make it easy for the multi-dimensional descriptive data to be interpreted. PCA results indicated that unit increase in soursop and gum Arabic in the ice cream led to 83.1% increase in starchy taste, 78.3% increase in consistency and 73.6% decrease in coconut aroma. For consumer acceptability test, the obtained results showed that, soursop puree addition at successive levels led to a statistically significant effect (p < 0.05) on colour, flavour, texture, taste and overall acceptability while of gum Arabic incorporation was not significant (p > 0.05) for all attributes. The effect due to interaction between gum Arabic and soursop puree at the different levels however was significant for colour, flavour and texture but not significant for taste and overall acceptability. Our results therefore point to a potential application of soursop fruit and gum Arabic as alternative ingredients in the manufacture of a non-dairy ice cream with desirable sensory properties that would expand the variety of options consumers can choose from.展开更多
The article is a study devoted to the development of the concept of the philosophical matrix as a system of categories of pure reason.The author proposes a new approach to understanding the philosophical system of cat...The article is a study devoted to the development of the concept of the philosophical matrix as a system of categories of pure reason.The author proposes a new approach to understanding the philosophical system of categories by putting forward unambiguous comparative concepts that serve as the basis for natural sciences.While the foundations of specific sciences are the concepts of“practical reason”,the author finds the categories of“pure reason”to be the foundations of philosophy,understood as“knowledge of the universal”.The article shows that relying on the senses and the concepts of“practical reason”allows for the verification of knowledge,while their generalization,removed from knowledge obtained empirically,gives categories of“pure reason”,which are accepted as the building material of the matrix.In this way,the author proposes a new system of philosophical categories that describes the fundamental aspects of human reasoning and its interaction with the world.At the same time,the categories of the philosophical matrix are not related to such ambiguous classificatory concepts as space,time,being,existence,consciousness,and others.The article draws attention to the fact that the matrix can be used not only to analyze philosophical theories but also to develop new concrete scientific approaches,for example,for the intellectual development of children.In addition,the article suggests the possibility of applying the philosophical matrix in other areas of the humanities,including psychology,linguistics,and sociology.As a result of the conducted research,the human intellect is divided into three ascending stages,designated by me in the following words-reason,mind,and wisdom,with the subsequent use of these concepts in philosophy and other fields of knowledge.展开更多
When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, ...When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, this paper proposes to use pure azimuth passive positioning to adjust the position of UAVs, i.e., certain UAVs in the formation transmit signals, the rest of the UAVs receive the signals passively, and extract the orientation information from them to adjust the position of the UAVs [1] [2] [3]. In this paper, the position adjustment problem of UAVs in “circular” formation flight under three models is investigated. To address the problem of “how to obtain the position of the receiving UAV when there are two UAVs with known numbers and evenly distributed on the circumference in addition to the UAV transmitting at the known center of the circle, and the rest of the UAVs with slight deviations in their positions are receiving the signals”, two purely mathematical geometric methods, namely, triangular localization method and polar co-ordinate method, are proposed respectively. We have determined the position of the receiving UAV;we have used the exhaustive method and the construction and disproof method to solve the problem of “how many UAVs are needed to transmit signals in order to realize the effective positioning of the UAVs when it is known that a certain UAV with a slight deviation in its position receives the signals emitted by two UAVs at the same time”, and the results show that: in addition to the known signals emitted by two UAVs, it is also necessary to transmit the signals emitted by two UAVs. The results show that in addition to the known two UAVs transmitting signals, two additional UAVs are required to transmit signals for precise po-sitioning. When the position of UAVs has deviation at the initial moment, the ideal approximation method and the target delimitation method are pro-posed, and the target of nine UAVs uniformly distributed on a circle of a spe-cific radius is achieved through several adjustments, after which the ad-vantages and disadvantages of each model are analyzed, and suggestions for improvement are put forward. The purely azimuthal passive localization method and the constructed model approach proposed in this paper can be extended to other fields, such as spacecraft formations in space and battle-ship formations at sea, as well as other formation flight position adjustment problems.展开更多
The development of microstructure and texture during cold deep drawing of commercially pure titanium(CP-Ti) was investigated.Three parts,stretching region,drawing region and flange region,were sequentially formed in...The development of microstructure and texture during cold deep drawing of commercially pure titanium(CP-Ti) was investigated.Three parts,stretching region,drawing region and flange region,were sequentially formed in the deep drawing process of the hemispheric surface part,with reference to deformation modes and strain regimes.Results show that the plastic strain is accommodated by dislocation slip and deformation twinning in the whole deep drawing process.The texture of the CP-Ti sheet and its drawn part consists of rolling texture component and recrystallization texture component.The intensity and type of the initial texture varied during the drawing process are related to the production of deformation twinning and dislocation slip.Twinning weakens the initial texture by randomizing the orientations of crystals,especially for the recrystallization texture.The recrystallization texture in the drawing region disappears due to the significant forming of twinning.Furthermore,over drawing would result in the predominance of dislocation slip and the texture is strengthened.展开更多
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of ...Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.展开更多
A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larc...A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larch and in bulk soils. The results show that the pH values of rhizosphere soil for all the plant ations except the pure walnut stand, which was slightly higher, were lower than those of bulk soils, while the organic matter contents in the rhizosphere soil f or all the plantations except the mixed plantation, which was slightly lower, we re higher than that in bulk soil. There exists a relative nitrogen accumulation in the rhizosphere and the extent to which the nitrogen accumulates is closely r elated to tree species and mixed pattern. As far as the total P and K contents a re considered, there exists a deficient tendency in rhizosphere in comparison wi th bulk soil. The element N, P and K are all mobilized in the rhizosphere of the pure or mixed plantation, characterized by the higher contents of the available N, P and K in the rhizosphere. The available N content in the rhizosphere of th e larch in mixed plantation was obviously higher than that of its pure plantatio n, whereas the available P and K contents in the rhizosphere of walnut in the mi xed plantation, on the other hand, were significantly higher than those of its p ure plantation.展开更多
In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated...In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated in detail using Gleeble-1500 thermal mechanical simulator, universal testing machine and optical microscope (OM). The compression deformation experimental data of commercially pure titanium (CP-Ti) were mapped to be a T vs lg diagram in which data fall into three distinct regions, i.e., three-stage work hardening, two-stage work hardening and flow softening, which can be separated by border lines at 17.5 and 15.4 for lg Z, where Z represents the Zener-Hollomon parameter. The deformation twin is found to have higher Z-value corresponding to the work hardening region. The differences in microstructures and mechanical properties for two kinds of billets indicate that forged billet consists of deformation twins and some twin intersections, and many twins cross the grain boundaries. However, nearly no twins can be seen in the microstructure of billet formed by rolling under optical microscope (OM), but there are equiaxed and platelike grains. Tensile tests and Vickers hardness test indicate that yield strength, tensile strength and microhardness of the samples after forging are higher than those after rolling.展开更多
TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with differen...TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with different processing parameters. Variant selection induced by stress during cooling after compression was found. The prismatical texture component which featured that the [0001] direction perpendicular to the compressing direction produced preferentially under the compressing stress. As a result, the transformedα phase possesses strong prismatical texture which is different with the basal texture of compressed αphase. The minimum elastic strain energy is demonstrated to be the main reason that causes the variant selection. Dynamic recrystallization behavior and microstructure evolution during hot compression were also studied.展开更多
The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time...The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time was studied.The corrosion process and EIS evolution are divided into three stages.In the initial stage,EIS is composed of two overlapped capacitive arcs,the polarization resistance and charge transfer resistance increase rapidly with immersion time,and the corrosion rate decreases.Then,two well-defined capacitive arcs appear,and the charge transfer resistance and corrosion rate remain stable.After a long immersion time,inductive component appears in a low frequency range,the charge transfer resistance decreases and the corrosion rate increases with the immersion time.The fractal dimension obtained from the time records of EIS seems to be a promising tool for the analysis of corrosion morphology because of its direct relationship with the metal surface.展开更多
基金supported by the National Research Foundation grants funded by the Ministry of Science and ICT of Korea(2021M3H4A3A02086211 and RS-2023-00217581).
文摘Incorporation of higher content Si anode material beyond 5 wt% to Li-ion batteries(LIBs)is challenging,owing to large volume change,swelling,and solid electrolyte interphase(SEI)instability issues.Herein,a strategy of diacetoxydimethylsilane(DAMS)additive-directed SEI stabilization is proposed for a stable operation of Si-0.33FeSi_(2)(named as Si-Fe)anode without graphite,which provides siloxane inorganics and organics enrichment that compensate insufficient passivation of fluoroethylene carbonate(FEC)additive and reduce a dependence on FEC.Unprecedented stable cycling performance of highly loaded(3.5 mA h cm^(-2))pure Si-Fe anode is achieved with 2 wt%DAMS combined with 9 wt%FEC additives under ambient pressure,yielding high capacity 1270 mA h g^(-1)at 0.5 C and significantly improved capacity retention of 81% after 100 cycles,whereas short circuit and rapid capacity fade occur with FEC only additive.DAMS-directed robust SEI layer dramatically suppresses swelling and particles crossover through separator,and therefore prevents short circuit,demonstrating a possible operation of pure Si or Sidominant anodes in the next-generation high-energy-density and safe LIBs.
基金supported by the National Natural Science Foundation of China(No.52250287)the Outstanding Youth Science Fund Project of Shaanxi Province of China(No.2024JC-JCQN-49)。
文摘To address the incompatibility between high environmental adaptability and deep subwavelength characteristics in conventional local resonance metamaterials,and overcome the deficiencies in the stability of existing active control techniques for band gaps,this paper proposes a design method of pure metal vibration damping metamaterial with continuously tunable stiffness for wideband elastic wave absorption.We design a dual-helix narrow-slit pure metal metamaterial unit,which possesses the triple advantage of high spatial compactness,low stiffness characteristics,and high structural stability,enabling the opening of elastic flexural band gaps in the low-frequency range.Similar to the principle of a sliding rheostat,the introduction of continuously sliding plug-ins into the helical slits enables the continuous variation of the stiffness of the metamaterial unit,achieving a continuously tunable band gap effect.This successfully extends the effective band gap by more than ten times.The experimental results indicate that this metamaterial unit can be used as an additional vibration absorber to absorb the low-frequency vibration energy effectively.Furthermore,it advances the metamaterial absorbers from a purely passive narrowband design to a wideband tunable one.The pure metal double-helix metamaterials retain the subwavelength properties of metamaterials and are suitable for deployment in harsh environments.Simultaneously,by adjusting its stiffness,it substantially broadens the effective band gap range,presenting promising potential applications in various mechanical equipment operating under adverse conditions.
基金the National Science Fund for Distinguished Young Scholars(Grant No.52125103)the National Natural Science Foundation of China(Grant Nos.52301232,52071041,12074048,and 12147102)China Postdoctoral Science Foundation(Grant No.2022M720552).
文摘Electrocatalytic reduction of CO_(2) converts intermittent renewable electricity into value-added liquid products with an enticing prospect,but its practical application is hampered due to the lack of high-performance electrocatalysts.Herein,we elaborately design and develop strongly coupled nanosheets composed of Ag nanoparticles and Sn-SnO_(2) grains,designated as Ag/Sn-SnO_(2) nanosheets(NSs),which possess optimized electronic structure,high electrical conductivity,and more accessible sites.As a result,such a catalyst exhibits unprecedented catalytic performance toward CO_(2)-to-formate conversion with near-unity faradaic efficiency(≥90%),ultrahigh partial current density(2,000 mA cm^(−2)),and superior long-term stability(200 mA cm^(−2),200 h),surpassing the reported catalysts of CO_(2) electroreduction to formate.Additionally,in situ attenuated total reflection-infrared spectra combined with theoretical calculations revealed that electron-enriched Sn sites on Ag/Sn-SnO_(2)NSs not only promote the formation of*OCHO and alleviate the energy barriers of*OCHO to*HCOOH,but also impede the desorption of H*.Notably,the Ag/Sn-SnO_(2)NSs as the cathode in a membrane electrode assembly with porous solid electrolyte layer reactor can continuously produce~0.12 M pure HCOOH solution at 100 mA cm^(−2)over 200 h.This work may inspire further development of advanced electrocatalysts and innovative device systems for promoting practical application of producing liquid fuels from CO_(2).
文摘Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable.
基金supported by the National Research Foundation of Korea(NRF)grant(No.2019R1A2C1085272)funded by the Ministry of Science,ICT and Future Planning(MSIP,South Korea)。
文摘Effects of Gd addition on the strain hardening behavior and yield asymmetry of pure Mg are investigated by subjecting extruded pure Mg,Mg–5Gd,and Mg–15Gd(all in wt%)to tension and compression tests along the extrusion direction(ED).As the amount of Gd added to pure Mg increases,the basal texture tilts toward the ED and the distribution of c-axes of grains becomes randomized.Under tension,the strain hardening rates of all the materials decrease until fracture.However,under compression,the strain hardening rate increases in the early stage of deformation in pure Mg and Mg–5Gd,whereas it continuously decreases in Mg–15Gd.Pure Mg exhibits considerably high tension-compression yield asymmetry,with a compressive yield strength(CYS)to tensile yield strength(TYS)ratio of 0.4.In contrast,Mg–5Gd exhibits excellent yield symmetry with CYS/TYS of 0.9 and Mg–15Gd exhibits reversed yield asymmetry with CYS/TYS of 1.2.Underlying mechanisms of these drastically different Gd-addition-induced deformation behaviors of the materials are discussed in terms of the crystallographic distribution of grains and the relative activation stresses of basal slip,prismatic slip,pyramidal slip,and{10–12}twinning under tension and compression.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.
基金National Natural Science Foundation of China (No.51474170)Natural Science Foundation of Shaanxi Province (No.2023-JC-YB-312)Key Laboratory Project of Shaanxi Province Educational Committee (No.20JS075)。
文摘A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained after 4 passes of equal channel angular pressing (ECAP).Tension–compression asymmetry in yield and work hardening behavior of UFG CP Ti were investigated by uniaxial tension and compression tests.The experimental results reveal that UFG CP Ti exhibits a relatively obvious tensioncompression asymmetry in yielding and work hardening behavior.The basal and prismaticslip are suppressed either for tension or compression,which is the easiest to activate.The tension twin system{1012}<1011> easily activated in compression deformation due to the prismatic fiber texture based on the Schmidt factor,consequently resulting in a lower yield strength under compression than tension.ECAP can improve the tension-compression asymmetry of CP Ti due to grain refinement.The interaction among the dislocations,grain boundaries and deformation twins are the main work hardening mechanisms for compression deformation,while the interaction between the dislocations and grain boundaries for tension deformation.Deformation twins lead to the higher work hardening under compression than tension.
基金Funded by National Natural Science Foundation of China(No.51474170)the Key Laboratory Project of Shaanxi Provincial Department of Education(No.20js075)。
文摘The ultra-fine grained(UFG)pure titanium was prepared by equal channel angular pressing(ECAP)and rotary swaging(RS).The strain controlled low cycle fatigue(LCF)test was carried out at room temperature.The fatigue life prediction model and mean stress relaxation model under asymmetrical stress load were discussed.The results show that the strain ratio has a significant effect on the low cycle fatigue performance of the UFG pure titanium,and the traditional Manson-coffin model can not accurately predict the fatigue life under asymmetric stress load.Therefore,the SWT mean stress correction model and three-parameter power curve model are proposed,and the test results are verified.The final research shows that the threeparameter power surface model has better representation.By studying the mean stress relaxation phenomenon under the condition of R≠-1,it is revealed that the stress ratio and the strain amplitude are the factors that significantly afiect the mean stress relaxation rate,and the mean stress relaxation model with the two variables is calculated to describe the mean stress relaxation phenomenon of the UFG pure titanium under different strain ratios.The fracture morphology of the samples was observed by SEM,and it was concluded that the final fracture zone of the fatigue fracture of the UFG pure titanium was a mixture of ductile fracture and quasi cleavage fracture.The toughness of the material increases with the increase of strain ratio at the same strain amplitude.
文摘Coconut (Cocos nucifera) milk-based ice cream is one of the innovative non-dairy milk products gaining popularity among consumers. The objective was to develop coconut milk-based ice cream incorporated with soursop (Annona muricata) fruit puree and gum Arabic from Acacia senegal var. kerensis, conduct a sensory evaluation using descriptive tests by trained panelists (n = 9) then evaluate for consumer acceptability by semi trained panelists (n = 30). A seven-point hedonic scale for colour, taste, flavour, texture and overall acceptability was used. The data obtained was subjected to analysis of variance (ANOVA) and the means were separated to determine their significance differences. Principal Component Analysis (PCA) was done for factor reduction to make it easy for the multi-dimensional descriptive data to be interpreted. PCA results indicated that unit increase in soursop and gum Arabic in the ice cream led to 83.1% increase in starchy taste, 78.3% increase in consistency and 73.6% decrease in coconut aroma. For consumer acceptability test, the obtained results showed that, soursop puree addition at successive levels led to a statistically significant effect (p < 0.05) on colour, flavour, texture, taste and overall acceptability while of gum Arabic incorporation was not significant (p > 0.05) for all attributes. The effect due to interaction between gum Arabic and soursop puree at the different levels however was significant for colour, flavour and texture but not significant for taste and overall acceptability. Our results therefore point to a potential application of soursop fruit and gum Arabic as alternative ingredients in the manufacture of a non-dairy ice cream with desirable sensory properties that would expand the variety of options consumers can choose from.
文摘The article is a study devoted to the development of the concept of the philosophical matrix as a system of categories of pure reason.The author proposes a new approach to understanding the philosophical system of categories by putting forward unambiguous comparative concepts that serve as the basis for natural sciences.While the foundations of specific sciences are the concepts of“practical reason”,the author finds the categories of“pure reason”to be the foundations of philosophy,understood as“knowledge of the universal”.The article shows that relying on the senses and the concepts of“practical reason”allows for the verification of knowledge,while their generalization,removed from knowledge obtained empirically,gives categories of“pure reason”,which are accepted as the building material of the matrix.In this way,the author proposes a new system of philosophical categories that describes the fundamental aspects of human reasoning and its interaction with the world.At the same time,the categories of the philosophical matrix are not related to such ambiguous classificatory concepts as space,time,being,existence,consciousness,and others.The article draws attention to the fact that the matrix can be used not only to analyze philosophical theories but also to develop new concrete scientific approaches,for example,for the intellectual development of children.In addition,the article suggests the possibility of applying the philosophical matrix in other areas of the humanities,including psychology,linguistics,and sociology.As a result of the conducted research,the human intellect is divided into three ascending stages,designated by me in the following words-reason,mind,and wisdom,with the subsequent use of these concepts in philosophy and other fields of knowledge.
文摘When a cluster of unmanned aerial vehicles (UAVs) is flying in formation, it is crucial to maintain the formation and not to be interfered by external electromagnetic wave signals. In order to maintain the formation, this paper proposes to use pure azimuth passive positioning to adjust the position of UAVs, i.e., certain UAVs in the formation transmit signals, the rest of the UAVs receive the signals passively, and extract the orientation information from them to adjust the position of the UAVs [1] [2] [3]. In this paper, the position adjustment problem of UAVs in “circular” formation flight under three models is investigated. To address the problem of “how to obtain the position of the receiving UAV when there are two UAVs with known numbers and evenly distributed on the circumference in addition to the UAV transmitting at the known center of the circle, and the rest of the UAVs with slight deviations in their positions are receiving the signals”, two purely mathematical geometric methods, namely, triangular localization method and polar co-ordinate method, are proposed respectively. We have determined the position of the receiving UAV;we have used the exhaustive method and the construction and disproof method to solve the problem of “how many UAVs are needed to transmit signals in order to realize the effective positioning of the UAVs when it is known that a certain UAV with a slight deviation in its position receives the signals emitted by two UAVs at the same time”, and the results show that: in addition to the known signals emitted by two UAVs, it is also necessary to transmit the signals emitted by two UAVs. The results show that in addition to the known two UAVs transmitting signals, two additional UAVs are required to transmit signals for precise po-sitioning. When the position of UAVs has deviation at the initial moment, the ideal approximation method and the target delimitation method are pro-posed, and the target of nine UAVs uniformly distributed on a circle of a spe-cific radius is achieved through several adjustments, after which the ad-vantages and disadvantages of each model are analyzed, and suggestions for improvement are put forward. The purely azimuthal passive localization method and the constructed model approach proposed in this paper can be extended to other fields, such as spacecraft formations in space and battle-ship formations at sea, as well as other formation flight position adjustment problems.
基金Project(SKLSP200906) supported by the Fund of State Key Laboratory of Solidification Processing in NWPUProject(B08040) supported by Program of Introducing Talents of Discipline in the Project of Advanced Materials and Their Forming Technology
文摘The development of microstructure and texture during cold deep drawing of commercially pure titanium(CP-Ti) was investigated.Three parts,stretching region,drawing region and flange region,were sequentially formed in the deep drawing process of the hemispheric surface part,with reference to deformation modes and strain regimes.Results show that the plastic strain is accommodated by dislocation slip and deformation twinning in the whole deep drawing process.The texture of the CP-Ti sheet and its drawn part consists of rolling texture component and recrystallization texture component.The intensity and type of the initial texture varied during the drawing process are related to the production of deformation twinning and dislocation slip.Twinning weakens the initial texture by randomizing the orientations of crystals,especially for the recrystallization texture.The recrystallization texture in the drawing region disappears due to the significant forming of twinning.Furthermore,over drawing would result in the predominance of dislocation slip and the texture is strengthened.
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
基金Project(2014CB644003)supported by the National Basic Research Program of ChinaProject(51321003)supported by the National Natural Science Foundation of ChinaProject(B06025)supported by"111"Project of China
文摘Titanium with gradient nano-to-micron scale grains from surface to matrix was fabricated by surface mechanical grinding treatment(SMGT) at room temperature.The SMGT-treated titanium shows higher strength than that of as-received one,but moderate ductility between those of ultra-fine grained(UFG) and coarse-grained titanium.Tensile stress-strain curves of SMGT-treated titanium show double strain hardening regimes.The strain hardening rate(dσ/dε) decreases with increasing strain in tensile deformation.The high strain hardening rate at initial yielding is attributed to nano-to-micron-grained surface layer.The low strain hardening rate at large plastic strain regime primarily results from coarse-grained matrix.The SMGT-treated titanium shows a ductile fracture mode with a large number of dimples.The small size of dimples in the treated surface layer is due to the combination of the high strength and strain hardening exponent.The difference between dimple size in nano-to-micron-grained surface layer and coarse-grained matrix is discussed in terms of plastic zone size at the tip of crack in the SMGT-treated titanium.
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larch and in bulk soils. The results show that the pH values of rhizosphere soil for all the plant ations except the pure walnut stand, which was slightly higher, were lower than those of bulk soils, while the organic matter contents in the rhizosphere soil f or all the plantations except the mixed plantation, which was slightly lower, we re higher than that in bulk soil. There exists a relative nitrogen accumulation in the rhizosphere and the extent to which the nitrogen accumulates is closely r elated to tree species and mixed pattern. As far as the total P and K contents a re considered, there exists a deficient tendency in rhizosphere in comparison wi th bulk soil. The element N, P and K are all mobilized in the rhizosphere of the pure or mixed plantation, characterized by the higher contents of the available N, P and K in the rhizosphere. The available N content in the rhizosphere of th e larch in mixed plantation was obviously higher than that of its pure plantatio n, whereas the available P and K contents in the rhizosphere of walnut in the mi xed plantation, on the other hand, were significantly higher than those of its p ure plantation.
文摘In order to reveal the differences caused by forging and rolling process for titanium ingots, hot compression behavior, mechanical properties and the microstructures of forged billets and rolled ones were investigated in detail using Gleeble-1500 thermal mechanical simulator, universal testing machine and optical microscope (OM). The compression deformation experimental data of commercially pure titanium (CP-Ti) were mapped to be a T vs lg diagram in which data fall into three distinct regions, i.e., three-stage work hardening, two-stage work hardening and flow softening, which can be separated by border lines at 17.5 and 15.4 for lg Z, where Z represents the Zener-Hollomon parameter. The deformation twin is found to have higher Z-value corresponding to the work hardening region. The differences in microstructures and mechanical properties for two kinds of billets indicate that forged billet consists of deformation twins and some twin intersections, and many twins cross the grain boundaries. However, nearly no twins can be seen in the microstructure of billet formed by rolling under optical microscope (OM), but there are equiaxed and platelike grains. Tensile tests and Vickers hardness test indicate that yield strength, tensile strength and microhardness of the samples after forging are higher than those after rolling.
文摘TA2 pure titanium was chosen to research the interaction among deformation, recrystallization and phase transformation during hot compression. The samples were hot compressed by thermal simulation method with different processing parameters. Variant selection induced by stress during cooling after compression was found. The prismatical texture component which featured that the [0001] direction perpendicular to the compressing direction produced preferentially under the compressing stress. As a result, the transformedα phase possesses strong prismatical texture which is different with the basal texture of compressed αphase. The minimum elastic strain energy is demonstrated to be the main reason that causes the variant selection. Dynamic recrystallization behavior and microstructure evolution during hot compression were also studied.
基金Foundation item: Projects (50771092, 21073162) supported by the National Natural Science Foundation of ChinaProject (2008) supported by the Scientific and Technological projects of Ningxia Province, China+1 种基金Project (08JC1421600) supported by the Science and Technology Commission of Shanghai,ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing,China
文摘The corrosion behaviors and corresponding electrochemical impedance spectroscopy(EIS) and polarization curves of pure Mg in neutral 1.0% NaCl solution were investigated.The fractal dimension of EIS at different time was studied.The corrosion process and EIS evolution are divided into three stages.In the initial stage,EIS is composed of two overlapped capacitive arcs,the polarization resistance and charge transfer resistance increase rapidly with immersion time,and the corrosion rate decreases.Then,two well-defined capacitive arcs appear,and the charge transfer resistance and corrosion rate remain stable.After a long immersion time,inductive component appears in a low frequency range,the charge transfer resistance decreases and the corrosion rate increases with the immersion time.The fractal dimension obtained from the time records of EIS seems to be a promising tool for the analysis of corrosion morphology because of its direct relationship with the metal surface.