In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperature...In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.展开更多
Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI me...Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ε. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.展开更多
Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of t...Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of these compounds collected from various journals were compared with proposed model and found to be more accurate than other widely used cubic equations of state like SRK and Peng Robinson. The form of current EOS best suits to PVT data and total error is almost halved for a set of experimental data in the most cases.展开更多
The Immersed Interface Method (IIM) is derived to solve the corresponding Fokker-Planck equation of Brownian motion with pure dry friction, which is one of the simplest models of piecewise-smooth stochastic systems. T...The Immersed Interface Method (IIM) is derived to solve the corresponding Fokker-Planck equation of Brownian motion with pure dry friction, which is one of the simplest models of piecewise-smooth stochastic systems. The IIM is capable of treating a discontinuity in the drift of Fokker-Planck equation and it is readily extended to the dry and viscous friction model. Analytic results of the considered model are used to confirm the effectiveness and design accuracy of the scheme.展开更多
The authors announce a newly-proved theorem of theirs. This theorem is of principal significance to numerical computation of operator equations of the first kind.
The anisotropic properties of subsurface media cause waveform distortions in seismic wave propagation,resulting in a negative infl uence on seismic imaging.In addition,wavefields simulated by the conventional coupled ...The anisotropic properties of subsurface media cause waveform distortions in seismic wave propagation,resulting in a negative infl uence on seismic imaging.In addition,wavefields simulated by the conventional coupled pseudo-acoustic equation are not only aff ected by SV-wave artifacts but are also limited by anisotropic parameters.We propose a least-squares reverse time migration(LSRTM)method based on the pure q P-wave equation in vertically transverse isotropic media.A fi nite diff erence and fast Fourier transform method,which can improve the effi ciency of the numerical simulation compared to a pseudo-spectral method,is used to solve the pure q P-wave equation.We derive the corresponding demigration operator,migration operator,and gradient updating formula to implement the LSRTM.Numerical tests on the Hess model and field data confirm that the proposed method has a good correction eff ect for the travel time deviation caused by underground anisotropic media.Further,it signifi cantly suppresses the migration noise,balances the imaging amplitude,and improves the imaging resolution.展开更多
Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 b...Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.展开更多
Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformati...Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress-strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress-true strain relation for CP Ti sheet is fitted well by the Kim-Tuan hardening equation rather than Voce and Swift models. The forming limit curve(FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim-Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.展开更多
An explicit procedure for transforming one bipartite entangled state into another via local operations and classical communication (LOCC) is presented. Our procedure is much simper than the previous ones in the sens...An explicit procedure for transforming one bipartite entangled state into another via local operations and classical communication (LOCC) is presented. Our procedure is much simper than the previous ones in the sense that, it only involves two steps and the explicit expression of local general measurement used in the procedure can be obtained by solving a set of linear equations. Furthermore, this procedure is still applicable in high dimensional case.展开更多
Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a...Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r).展开更多
The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes w...The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes with parallel nature which are pure alternative segment explicit-implicit(PASE-I) and implicit-explicit(PASI-E) schemes. It also gives the existence and uniqueness,the stability and the error estimate of numerical solutions for the parallel difference schemes. Theoretical analysis demonstrates that PASE-I and PASI-E schemes have obvious parallelism, unconditionally stability and second-order convergence in both space and time. The numerical experiments verify that the calculation accuracy of PASE-I and PASI-E schemes are better than that of the existing alternating segment Crank-Nicolson scheme, alternating segment explicit-implicit and implicit-explicit schemes. The speedup of PASE-I scheme is 9.89, compared to classical Crank-Nicolson scheme. Thus the schemes given by this paper are high efficient and practical for solving the nonlinear Leland equation.展开更多
基金Project(51275414)supported by the National Natural Science Foundation of ChinaProject(2015JM5204)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(Z2015064)supported by the Graduate Starting Seed Fund of the Northwestern Polytechnical University,ChinaProject(130-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘In order to study the work-ability and establish the optimum hot formation processing parameters for industrial 1060 pure aluminum, the compressive deformation behavior of pure aluminum was investigated at temperatures of 523?823 K and strain rates of 0.005?10 s?1 on a Gleeble?1500 thermo-simulation machine. The influence rule of processing parameters (strain, strain rate and temperature) on flow stress of pure aluminum was investigated. Nine analysis factors consisting of material parameters and according weights were optimized. Then, the constitutive equations of multilevel series rules, multilevel parallel rules and multilevel series ¶llel rules were established. The correlation coefficients (R) are 0.992, 0.988 and 0.990, respectively, and the average absolute relative errors (AAREs) are 6.77%, 8.70% and 7.63%, respectively, which proves that the constitutive equations of multilevel series rules can predict the flow stress of pure aluminum with good correlation and precision.
基金supported by the National Natural Science Foundation of China(No.41674118)the national science and technology major project(No.2016ZX05027-002)
文摘Based on the pure quasi-P wave equation in transverse isotropic media with a vertical symmetry axis (VTI media), a quasi-P wave equation is obtained in transverse isotropic media with a tilted symmetry axis (TTI media). This is achieved using projection transformation, which rotates the direction vector in the coordinate system of observation toward the direction vector for the coordinate system in which the z-component is parallel to the symmetry axis of the TTI media. The equation has a simple form, is easily calculated, is not influenced by the pseudo-shear wave, and can be calculated reliably when δ is greater than ε. The finite difference method is used to solve the equation. In addition, a perfectly matched layer (PML) absorbing boundary condition is obtained for the equation. Theoretical analysis and numerical simulation results with forward modeling prove that the equation can accurately simulate a quasi-P wave in TTI medium.
文摘Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of these compounds collected from various journals were compared with proposed model and found to be more accurate than other widely used cubic equations of state like SRK and Peng Robinson. The form of current EOS best suits to PVT data and total error is almost halved for a set of experimental data in the most cases.
文摘The Immersed Interface Method (IIM) is derived to solve the corresponding Fokker-Planck equation of Brownian motion with pure dry friction, which is one of the simplest models of piecewise-smooth stochastic systems. The IIM is capable of treating a discontinuity in the drift of Fokker-Planck equation and it is readily extended to the dry and viscous friction model. Analytic results of the considered model are used to confirm the effectiveness and design accuracy of the scheme.
文摘The authors announce a newly-proved theorem of theirs. This theorem is of principal significance to numerical computation of operator equations of the first kind.
基金financially supported by the National Key R&D Program of China (No. 2019YFC0605503)the Major Scientific and Technological Projects of CNPC (No. ZD2019-183-003)the National Natural Science Foundation of China (No. 41922028,41874149)。
文摘The anisotropic properties of subsurface media cause waveform distortions in seismic wave propagation,resulting in a negative infl uence on seismic imaging.In addition,wavefields simulated by the conventional coupled pseudo-acoustic equation are not only aff ected by SV-wave artifacts but are also limited by anisotropic parameters.We propose a least-squares reverse time migration(LSRTM)method based on the pure q P-wave equation in vertically transverse isotropic media.A fi nite diff erence and fast Fourier transform method,which can improve the effi ciency of the numerical simulation compared to a pseudo-spectral method,is used to solve the pure q P-wave equation.We derive the corresponding demigration operator,migration operator,and gradient updating formula to implement the LSRTM.Numerical tests on the Hess model and field data confirm that the proposed method has a good correction eff ect for the travel time deviation caused by underground anisotropic media.Further,it signifi cantly suppresses the migration noise,balances the imaging amplitude,and improves the imaging resolution.
基金Project(12JCYBJC32100)supported by the Tianjin Research Program of Application Foundation and Advanced Technology,ChinaProject([2013]693)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘Creep and anelastic backflow behaviors of pure copper (4N Cu) with grain size dg=40 μm were investigated at low temperatures of T〈0.3Tm (Tm is melting point) and ultra-low creep rates of ε≤1×10^-10 s^-1 by a high strain-resolution measurement (the helicoid spring specimen technique). Analysis of creep data was based on the scaling factors of creep curves instead of the conventional extrapolated steady-state creep rate. Power-law creep equation is suggested to be the best for describing the primary transient creep behavior, because the pre-parameter does not apparently change with elapsed time. The observed anelastic strains are 1/6 of the calculated elastic strains, and linear viscous behavior was identified from the logarithm plot of the anelastic strain rate versus anelastic strain (slope equals 1). Therefore, the creep anelasticity is suggested to be due to the unbowing of there-dimensional network of dislocations.
基金supported by the National Research Foundation of Korea (NRF) granted by the Korea government [2014R1A2A2A01005903]Priority Research Centers Program (2010-0020089)support from a grant [R0003356] (Tuning Professional Support Center in Daegu Metropolitan City) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)
文摘Commercially pure titanium(CP Ti) has been actively used in the plate heat exchanger due to its light weight, high specific strength, and excellent corrosion resistance. However, researches for the plastic deformation characteristics and press formability of the CP Ti sheet are not much in comparison with automotive steels and aluminum alloys. The mechanical properties and hardening behavior evaluated in stress-strain relation of the CP Ti sheet are clarified in relation with press formability. The flow curve denoting true stress-true strain relation for CP Ti sheet is fitted well by the Kim-Tuan hardening equation rather than Voce and Swift models. The forming limit curve(FLC) of CP Ti sheet as a criterion for press formability was experimentally evaluated by punch stretching test and analytically predicted via Hora's modified maximum force criterion. The predicted FLC by adopting Kim-Tuan hardening model and appropriate yield function shows good correlation with the experimental results of punch stretching test.
基金supported by National Natural Science Foundation of China under Grant No.10404039
文摘An explicit procedure for transforming one bipartite entangled state into another via local operations and classical communication (LOCC) is presented. Our procedure is much simper than the previous ones in the sense that, it only involves two steps and the explicit expression of local general measurement used in the procedure can be obtained by solving a set of linear equations. Furthermore, this procedure is still applicable in high dimensional case.
基金Supported by the National Natural Science Foundation of China(No.10271104)the Guangdong Provincial Natural Science Foundation(No.011781)the Natural Science Foundation of the Education Department of Guangdong Province(No.0161)
文摘Let a, b, c, r be fixed positive integers such that a^2 + b^2 = c^r, min(a, b, c, r) 〉 1 and 2 r. In this paper we prove that if a ≡ 2 (mod 4), b ≡ 3 (mod 4), c 〉 3.10^37 and r 〉 7200, then the equation a^x + b^y = c^z only has the solution (x, y, z) = (2, 2, r).
基金supported by National Natural Science Foundation of China(No.11371135)the Fundamental Research Funds for the Central Universities(WK2014ZZD10)
文摘The research on the numerical solution of the nonlinear Leland equation has important theoretical significance and practical value. To solve nonlinear Leland equation, this paper offers a class of difference schemes with parallel nature which are pure alternative segment explicit-implicit(PASE-I) and implicit-explicit(PASI-E) schemes. It also gives the existence and uniqueness,the stability and the error estimate of numerical solutions for the parallel difference schemes. Theoretical analysis demonstrates that PASE-I and PASI-E schemes have obvious parallelism, unconditionally stability and second-order convergence in both space and time. The numerical experiments verify that the calculation accuracy of PASE-I and PASI-E schemes are better than that of the existing alternating segment Crank-Nicolson scheme, alternating segment explicit-implicit and implicit-explicit schemes. The speedup of PASE-I scheme is 9.89, compared to classical Crank-Nicolson scheme. Thus the schemes given by this paper are high efficient and practical for solving the nonlinear Leland equation.