This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state t...This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.展开更多
In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack a...In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.展开更多
The entangled orbital angular momentum(OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. T...The entangled orbital angular momentum(OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. The results indicate that the entangled OAM three-qubit state with higher OAM modes will be more robust against turbulence.Furthermore, it is found that the entangled OAM three-qubit state has a higher overall transmission for small OAM values.展开更多
A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alic...A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.展开更多
We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequen...We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.展开更多
We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quant...We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.展开更多
Recently Jiang et al.[Chin.Phys.Lett.24 (2007) 1144] gave a scheme for probabilistic controlled tele-portation of a triplet W state from the sender Alice to the distant receiver Bob.The m controlled qubits are sharedb...Recently Jiang et al.[Chin.Phys.Lett.24 (2007) 1144] gave a scheme for probabilistic controlled tele-portation of a triplet W state from the sender Alice to the distant receiver Bob.The m controlled qubits are sharedby m(s_1,s_2,...,s_m) spatially-separated supervisors.Based on transformation operator,we can extend to teleporting anarbitrary three-qubit state.The relation between the transformation operators and the Bob's unitary transformation isalso obtained.展开更多
We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is ...We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is shown that the entanglement evolution is restricted by a set of monogamy relations. Furthermore, as quantified by the negativity, the entanglement dynamical property of the mixed entangled state of cavity photons is investigated. It is found that the three cavity photons can exhibit the phenomenon of entanglement sudden death (ESD). However, compared with the evolution of a generalized three-qubit GHZ state which has the equal initial entanglement, the ESD time of mixed states is later than that of the pure state. Finally, we discuss the entanglement distribution in the multipartite system, and point out the intrinsic relation between the ESD of cavity photons and the entanglement sudden birth of reservoirs.展开更多
In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated stat...In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement, it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.展开更多
In this paper, we focus on two-qubit pure state tomography. For an arbitrary unknown two-qubit pure state, separable or entangled, it has been found that the measurement probabilities of 16 projections onto the tensor...In this paper, we focus on two-qubit pure state tomography. For an arbitrary unknown two-qubit pure state, separable or entangled, it has been found that the measurement probabilities of 16 projections onto the tensor products of Pauli eigenstates are enough to uniquely determine the state. Moreover, these corresponding product states are arranged into five orthonormal bases. We design five quantum circuits, which are decomposed into the common gates in universal quantum computation, to simulate the five projective measurements onto these bases. At the end of each circuit, we measure each qubit with the projective measurement {|0〉〈0 |,|1〉,〈1| }. Then, we consider the open problem whether three orthonormal bases are enough to distinguish all two-qubit pure states. A necessary condition is given. Suppose that there are three orthonormal bases {B1,B2,B3}. Denote the unitary transition matrices from B1 to {B2,B3 } as U1 and U2. All 32 elements of matrices U1 and U2 should not be zero. If not, these three bases cannot distinguish all two-qubit pure states.展开更多
We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability,utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits.Furthermore,we proce...We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability,utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits.Furthermore,we proceed to investigate the effects of different quantum noises(e.g.,amplitude-damping,phase-damping,bit-flip and phase-flip noises)on the systems.The fidelity results of three-qubit target state are presented,which are usually used to illustrate how close the output state is to the target state.To compare the different effects between the four common types of quantum noises,the fidelities under one specific identical target state are also calculated and discussed.It is found that the fidelity of the phase-flip noisy channel drops the fastest through the four types of noisy channels,while the fidelity is found to always maintain at 1 in bit-flip noisy channel.展开更多
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting...We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.展开更多
An explicit procedure for transforming one bipartite entangled state into another via local operations and classical communication (LOCC) is presented. Our procedure is much simper than the previous ones in the sens...An explicit procedure for transforming one bipartite entangled state into another via local operations and classical communication (LOCC) is presented. Our procedure is much simper than the previous ones in the sense that, it only involves two steps and the explicit expression of local general measurement used in the procedure can be obtained by solving a set of linear equations. Furthermore, this procedure is still applicable in high dimensional case.展开更多
We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parailel to the x-y equator with different phases contains the same inf...We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parailel to the x-y equator with different phases contains the same information. We also investigate the problem of state estimation of qubits from three circles. The optimai estimation fidelity is derived.展开更多
This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum net...This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and .展开更多
A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operatio...A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operations and directly decoded by utilizing the corresponding measurements in Bell basis or single-particle basis. Comparing with most previous DSQC protocols, the present scheme has a high total efficiency, which comes up to 50%. Apart from this, it has still the advantages of high capacity as each W state can carry two bits of secret information, and high intrinsic efficiency because almost all the instances are useful. Furthermore, the security of this communication can be ensured by the decoy particle checking technique and the two-step transmitting idea.展开更多
In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate...In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.展开更多
Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of t...Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of these compounds collected from various journals were compared with proposed model and found to be more accurate than other widely used cubic equations of state like SRK and Peng Robinson. The form of current EOS best suits to PVT data and total error is almost halved for a set of experimental data in the most cases.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
基金Project supported by NSFC(Grant Nos.61671087,61272514,61170272,61003287,61571335,61628209)the Fok Ying Tong Education Foundation(Grant No.131067)+2 种基金the National Key R&D Program of China under Grant 2017YFB0802300the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(2018BDKFJJ016)Hubei Science Foundation(2016CFA030,2017AAA125)。
文摘In this paper,we first re-examine the previous protocol of controlled quantum secure direct communication of Zhang et al.’s scheme,which was found insecure under two kinds of attacks,fake entangled particles attack and disentanglement attack.Then,by changing the party of the preparation of cluster states and using unitary operations,we present an improved protocol which can avoid these two kinds of attacks.Moreover,the protocol is proposed using the three-qubit partially entangled set of states.It is more efficient by only using three particles rather than four or even more to transmit one bit secret information.Given our using state is much easier to prepare for multiqubit states and our protocol needs less measurement resource,it makes this protocol more convenient from an applied point of view.
基金supported by the National Defense Innovation Foundation of China,Chinese Academy of Sciences(Grant No.CXJJ-16S080)
文摘The entangled orbital angular momentum(OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. The results indicate that the entangled OAM three-qubit state with higher OAM modes will be more robust against turbulence.Furthermore, it is found that the entangled OAM three-qubit state has a higher overall transmission for small OAM values.
基金*Supported by the National Natural Science Foundation of China under Grant No. 60807014, the Natural Science Foundation of Jiangxi Province of China under Grant No. 2009GZW0005, the Research Foundation of state key laboratory of advanced optical communication systems and networks, and the Research Foundation of the Education Department of Jiangxi Province under Grant No. G J J09153
文摘A new application of cluster states is investigated for quantum information splitting (QIS) of an arbitrary three-qubit state. In our scheme, a four-qubit cluster state and a Bell state are shared by a sender (Alice), a controller (Charlie), and a receiver (Bob). Both the sender and controller only need to perform Bell-state measurements (BSMs), the receiver can reconstruct the arbitrary three-qubit state by performing some appropriately unitary transformations on his qubits after he knows the measured results of both the sender and the controller. This QIS scheme is deterministic.
基金Project supported by the National Natural Science Foundation of China (Grant No 10847147)the Natural Science Foundation of Jiangsu Province (Grant No BK2008437)+1 种基金Jiangsu Provincial Universities (Grant No 07KJB510066)the Science Foundation of Nanjing University of Information Science and Technology
文摘We present a scheme for multiparty quantum remote secret conference (MQRSC) with pure entangled states, not maximally entangled multipartite quantum systems. The conferees first share a private quantum key, a sequence of pure entangled states and then use them to encode and decode the secret messages. The conferees exploit the decoy-photon technique to ensure the security of the transmission of qubits. This MQRSC scheme is more feasible and efficient than others.
文摘We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.
基金Natural Science Foundation of Shaanxi Province under Grant No.2004A15the Science Plan Foundation of the Education Department of Shaanxi Province under Grant No.05JK288
文摘Recently Jiang et al.[Chin.Phys.Lett.24 (2007) 1144] gave a scheme for probabilistic controlled tele-portation of a triplet W state from the sender Alice to the distant receiver Bob.The m controlled qubits are sharedby m(s_1,s_2,...,s_m) spatially-separated supervisors.Based on transformation operator,we can extend to teleporting anarbitrary three-qubit state.The relation between the transformation operators and the Bob's unitary transformation isalso obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10905016 and 10971247)the Natural Science Foundation of Hebei Province of China (Grant Nos. A2012205062,A2012205013,and A2010000344)the Fund of Hebei Normal niversity
文摘We analyze the multipartite entanglement evolution of three-qubit mixed states composed of a GHZ state and a W state. For a composite system consisting of three cavities interacting with independent reservoirs, it is shown that the entanglement evolution is restricted by a set of monogamy relations. Furthermore, as quantified by the negativity, the entanglement dynamical property of the mixed entangled state of cavity photons is investigated. It is found that the three cavity photons can exhibit the phenomenon of entanglement sudden death (ESD). However, compared with the evolution of a generalized three-qubit GHZ state which has the equal initial entanglement, the ESD time of mixed states is later than that of the pure state. Finally, we discuss the entanglement distribution in the multipartite system, and point out the intrinsic relation between the ESD of cavity photons and the entanglement sudden birth of reservoirs.
基金Project supported by National Natural Science Foundation of China (Grant No 10674025), and National Natural Science Foun dation of Fujian Province of China (Grant No 2006J0235).
文摘In the context of microwave cavity QED, this paper proposes a new scheme for teleportation of an arbitrary pure state of two atoms. The scheme is very different from the previous ones which achieve the integrated state measurement, it deals in a probabilistic but simplified way. In the scheme, no additional atoms are involved and thus only two atoms are required to be detected. The scheme can also be used for the teleportation of arbitrary pure states of many atoms or two-mode cavities.
基金Project supported partially by the National Key Research and Development Program of China(Grant No.2016YFB1000902)the National Natural Science Foundation of China(Grant No.61472412)the Program for Creative Research Group of the National Natural Science Foundation of China(Grant No.61621003)
文摘In this paper, we focus on two-qubit pure state tomography. For an arbitrary unknown two-qubit pure state, separable or entangled, it has been found that the measurement probabilities of 16 projections onto the tensor products of Pauli eigenstates are enough to uniquely determine the state. Moreover, these corresponding product states are arranged into five orthonormal bases. We design five quantum circuits, which are decomposed into the common gates in universal quantum computation, to simulate the five projective measurements onto these bases. At the end of each circuit, we measure each qubit with the projective measurement {|0〉〈0 |,|1〉,〈1| }. Then, we consider the open problem whether three orthonormal bases are enough to distinguish all two-qubit pure states. A necessary condition is given. Suppose that there are three orthonormal bases {B1,B2,B3}. Denote the unitary transition matrices from B1 to {B2,B3 } as U1 and U2. All 32 elements of matrices U1 and U2 should not be zero. If not, these three bases cannot distinguish all two-qubit pure states.
基金supported by the Tang Scholar Project of Soochow Universitythe National Natural Science Foundation of China(Grant No.61873162)+1 种基金the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University(Grant No.ICT2021B24)China Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network and Suzhou Key Laboratory of Advanced Optical Communication Network Technology。
文摘We propose a novel scheme for remote state preparation of an arbitrary three-qubit state with unit success probability,utilizing a nine-qubit cluster-GHZ state without introducing auxiliary qubits.Furthermore,we proceed to investigate the effects of different quantum noises(e.g.,amplitude-damping,phase-damping,bit-flip and phase-flip noises)on the systems.The fidelity results of three-qubit target state are presented,which are usually used to illustrate how close the output state is to the target state.To compare the different effects between the four common types of quantum noises,the fidelities under one specific identical target state are also calculated and discussed.It is found that the fidelity of the phase-flip noisy channel drops the fastest through the four types of noisy channels,while the fidelity is found to always maintain at 1 in bit-flip noisy channel.
文摘We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
基金supported by National Natural Science Foundation of China under Grant No.10404039
文摘An explicit procedure for transforming one bipartite entangled state into another via local operations and classical communication (LOCC) is presented. Our procedure is much simper than the previous ones in the sense that, it only involves two steps and the explicit expression of local general measurement used in the procedure can be obtained by solving a set of linear equations. Furthermore, this procedure is still applicable in high dimensional case.
基金the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos.2006kj070A,2006kj057B,and jk2008b83zcNational Natural Science Foundation of China under Grant No.60678022
文摘We consider the problem of state estimation of qubits chosen from circles. It is shown that any qubit encoded in pairs chosen from a fixed circle parailel to the x-y equator with different phases contains the same information. We also investigate the problem of state estimation of qubits from three circles. The optimai estimation fidelity is derived.
文摘This article discusses the separability of the pure states and mixed states of the quantum network of two nodes by means of the criterion of no entanglement in terms of the covariance correlation tensor in quantum network theory, i.e. for a composite system consisting of two nodes. The covariance correlation tensor is equal to zero for all possible and .
基金Supported by the Key Project of the Education Department of Anhui Province under Grant No.KJ2010A323the Talent Project of the Anhui Province for Outstanding Youth under Grant Nos.2009SQRZ190,2010SQRL186,2010SQRL187 and 2011SQRL147the Natural Science Research Programme of the Education Department of Anhui Province under Grant No.KJ2009B018Z
文摘A two-step deterministic secure quantum communication (DSQC) scheme using blocks of three-qubit W state is proposed. In this scheme, the secret messages can be encoded by employing four two-particle unitary operations and directly decoded by utilizing the corresponding measurements in Bell basis or single-particle basis. Comparing with most previous DSQC protocols, the present scheme has a high total efficiency, which comes up to 50%. Apart from this, it has still the advantages of high capacity as each W state can carry two bits of secret information, and high intrinsic efficiency because almost all the instances are useful. Furthermore, the security of this communication can be ensured by the decoy particle checking technique and the two-step transmitting idea.
基金Supported by Key Program of National Natural Science Foundation of China under Grant No. 60931002National Natural Science Foundation of China under Grant No.10704001+3 种基金Anhui Provincial Natural Science Foundation under Grant No. 070412060the Major Program of the Education Department of Anhui Province under Grant No. KJ2010ZD08the Key Program of the Education Department of Anhui Province under Grant No. KJ2010A287the Personal Development Foundation of Anhui Province under Grant No. 2009Z022
文摘In this paper, we propose a scheme for generating an arbitrary three-dimensional pure state of vibrational motion of a trapped ion. Our scheme is based on a sequence of laser pulses, which are tuned to the appropriate vibrational sidebands with respect to the appropriate electronic transition.
文摘Proposed new cubic equation of state is more accurate than others in result and simple in form. The equation has been tried with 23 pure compounds including both polar and non-polar compounds. Experimental values of these compounds collected from various journals were compared with proposed model and found to be more accurate than other widely used cubic equations of state like SRK and Peng Robinson. The form of current EOS best suits to PVT data and total error is almost halved for a set of experimental data in the most cases.