Quantitative oxygen detection,especially at low concentrations,holds significant importance in the realms of biology,complex environments,and chemical process engineering.Due to the high sensitivity and rapid response...Quantitative oxygen detection,especially at low concentrations,holds significant importance in the realms of biology,complex environments,and chemical process engineering.Due to the high sensitivity and rapid response of the triplet excitons of phosphorescence to oxygen,pure organic room-temperature phosphorescence(RTP)materials have garnered widespread attention in recent years for oxygen detection.However,simultaneously achieving ultralong phosphorescence at room temperature and quantitative oxygen detection from pure organic host-guest doped materials poses challenges.The d ensely packed materials may decrease non-radiative decay to increase the phosphorescence,but are unsuitable for oxygen diffusion in oxygen detection.Herein,the oxygen sensitivity of host-guest doped RTP materials using 4-bromo-N,N-bis(4-(tertbutyl)phenyl)aniline(TPABuBr)as the host and 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione(NIBr)as the guest was developed.The doped material exhibits fluorescence-phosphorescence dual-emission behavior at room temperature.The tert-butyl groups in TPABuBr facilitate appropriate intermolecular spacing in the crystal state,enhancing oxygen permeability.Therefore,oxygen penetration can quench the phosphorescence emission.The observed linear relationship between the phosphorescence intensity of the doped material and the oxygen volume fraction conforms to the Stern-Volmer equation,suggesting its potential for quantitative analysis of oxygen concentration.The calculated limit of detection is 0.015%(φ),enabling the analysis of oxygen with a volume fraction of less than 2.5%(φ).Moreover,the doped materials demonstrate rapid response and excellent photostability,indicating their potential utility as oxygen sensors.This study elucidates the design and characteristics of NIBr/TPABuBr doped materials,highlighting their potential application in oxygen concentration detection and offering insights for the design of oxygen sensors.展开更多
Room-temperature phosphorescence(RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes.In this short review,recent progress on enhanc...Room-temperature phosphorescence(RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes.In this short review,recent progress on enhancement of RTP from purely organic materials is summarized.According to the mechanism of phosphorescence emission,two principles are discussed to construct efficient RTP materials:one is promoting intersystem crossing(ISC) efficiency by using aromatic carbonyl,heavyatom,or/and heterocycle/heteroatom containing compounds;the other is suppressing intramolecular motion and intermolecular collision which can quench excited triplet states,including embedding phosphors into polymers and packing them tightly in crystals.With aforementioned strategies,RTP from purely organic materials was achieved both in fluid and rigid media.展开更多
Purely organic room-temperature phosphors,which have received extensive attention as emerging stateof-the-art luminescent materials in various fields,have a longer lifetime than fluorophores.The energy gap law and El-...Purely organic room-temperature phosphors,which have received extensive attention as emerging stateof-the-art luminescent materials in various fields,have a longer lifetime than fluorophores.The energy gap law and El-Sayed’s rule provide clear design principles for the development of organic room-temperature phosphorescence.Therefore,the incorporation of heteroatoms(such as sulfur and phosphorus)usually promotes the intersystem crossing rate and increases the 3(π,π*)configuration to realize long lifetimes.Furthermore,boron-containing phosphors not only display excellent phosphorescence properties but also expand El-Sayed’s rule without(n,π*)transitions.This review summarizes recent work on organic phosphorescence of heterocycles with boron,sulfur,and phosphorus heteroatoms and highlights the significance of the guidelines for constructing efficient phosphorescence molecules.This work is instrumental in further diversifying the pool of phosphorescent molecules and developing new and effective design strategies.展开更多
Developing smart room-temperature phosphorescence(RTP)materials with facile and efficient strategies have attracted increasing attention.Herein,tunable RTP materials with two phosphorescent sources and stepwise enhanc...Developing smart room-temperature phosphorescence(RTP)materials with facile and efficient strategies have attracted increasing attention.Herein,tunable RTP materials with two phosphorescent sources and stepwise enhanced phosphorescence in water are obtained through an in-situ self-assembly strategy based on the sensitization of phosphors by trimesic acid(TMA)through simple doping and the rigidification of phosphors by hydrogen-bonded organic frameworks(HOFs).As expected,doped TMA+phosphors simultaneously promote the RTP emission of phosphors and maintain TMA phosphorescence.In-situ assembled HOF(MATMA)@phosphors facilitate smart RTP emission in water due to the coexistence of phosphorescent HOF(MA-TMA)host and phosphors guest.Additionally,such RTP materials with good processability demonstrate the application potential in information security,benefitting from their varied afterglow lifetimes and easy luminous recognition in the darkness.This work will inspire the design of dual phosphorescent source RTP systems and provide new strategies for the development of smart RTP materials in water.展开更多
文摘Quantitative oxygen detection,especially at low concentrations,holds significant importance in the realms of biology,complex environments,and chemical process engineering.Due to the high sensitivity and rapid response of the triplet excitons of phosphorescence to oxygen,pure organic room-temperature phosphorescence(RTP)materials have garnered widespread attention in recent years for oxygen detection.However,simultaneously achieving ultralong phosphorescence at room temperature and quantitative oxygen detection from pure organic host-guest doped materials poses challenges.The d ensely packed materials may decrease non-radiative decay to increase the phosphorescence,but are unsuitable for oxygen diffusion in oxygen detection.Herein,the oxygen sensitivity of host-guest doped RTP materials using 4-bromo-N,N-bis(4-(tertbutyl)phenyl)aniline(TPABuBr)as the host and 6-bromo-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione(NIBr)as the guest was developed.The doped material exhibits fluorescence-phosphorescence dual-emission behavior at room temperature.The tert-butyl groups in TPABuBr facilitate appropriate intermolecular spacing in the crystal state,enhancing oxygen permeability.Therefore,oxygen penetration can quench the phosphorescence emission.The observed linear relationship between the phosphorescence intensity of the doped material and the oxygen volume fraction conforms to the Stern-Volmer equation,suggesting its potential for quantitative analysis of oxygen concentration.The calculated limit of detection is 0.015%(φ),enabling the analysis of oxygen with a volume fraction of less than 2.5%(φ).Moreover,the doped materials demonstrate rapid response and excellent photostability,indicating their potential utility as oxygen sensors.This study elucidates the design and characteristics of NIBr/TPABuBr doped materials,highlighting their potential application in oxygen concentration detection and offering insights for the design of oxygen sensors.
基金the financial support from The National Basic Research Program of China(No.2014CB643802)Ministry of Science and Technology(No.2016YFB0401001)the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals
文摘Room-temperature phosphorescence(RTP) materials have attracted great attention due to their involvement of excited triplet states and comparatively long decay lifetimes.In this short review,recent progress on enhancement of RTP from purely organic materials is summarized.According to the mechanism of phosphorescence emission,two principles are discussed to construct efficient RTP materials:one is promoting intersystem crossing(ISC) efficiency by using aromatic carbonyl,heavyatom,or/and heterocycle/heteroatom containing compounds;the other is suppressing intramolecular motion and intermolecular collision which can quench excited triplet states,including embedding phosphors into polymers and packing them tightly in crystals.With aforementioned strategies,RTP from purely organic materials was achieved both in fluid and rigid media.
基金the Ministry of Education and Synergetic Innovation Center for Organic Electronics and Information Displays,LiaoNing Revitalization Talents Program(grant no.XLYC1902111)and the Key Projects of the Department of Education,Liaoning Province(grant no.LZD202005)for their financial support of this research.
文摘Purely organic room-temperature phosphors,which have received extensive attention as emerging stateof-the-art luminescent materials in various fields,have a longer lifetime than fluorophores.The energy gap law and El-Sayed’s rule provide clear design principles for the development of organic room-temperature phosphorescence.Therefore,the incorporation of heteroatoms(such as sulfur and phosphorus)usually promotes the intersystem crossing rate and increases the 3(π,π*)configuration to realize long lifetimes.Furthermore,boron-containing phosphors not only display excellent phosphorescence properties but also expand El-Sayed’s rule without(n,π*)transitions.This review summarizes recent work on organic phosphorescence of heterocycles with boron,sulfur,and phosphorus heteroatoms and highlights the significance of the guidelines for constructing efficient phosphorescence molecules.This work is instrumental in further diversifying the pool of phosphorescent molecules and developing new and effective design strategies.
基金Natural Science Foundation of Jilin Province,Grant/Award Number:20230101052JCNatural Science Foundation of Shandong Province,Grant/Award Numbers:ZR2020QB111,ZR2022QB018National Natural Science Foundation of China,Grant/Award Number:22178187。
文摘Developing smart room-temperature phosphorescence(RTP)materials with facile and efficient strategies have attracted increasing attention.Herein,tunable RTP materials with two phosphorescent sources and stepwise enhanced phosphorescence in water are obtained through an in-situ self-assembly strategy based on the sensitization of phosphors by trimesic acid(TMA)through simple doping and the rigidification of phosphors by hydrogen-bonded organic frameworks(HOFs).As expected,doped TMA+phosphors simultaneously promote the RTP emission of phosphors and maintain TMA phosphorescence.In-situ assembled HOF(MATMA)@phosphors facilitate smart RTP emission in water due to the coexistence of phosphorescent HOF(MA-TMA)host and phosphors guest.Additionally,such RTP materials with good processability demonstrate the application potential in information security,benefitting from their varied afterglow lifetimes and easy luminous recognition in the darkness.This work will inspire the design of dual phosphorescent source RTP systems and provide new strategies for the development of smart RTP materials in water.