To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a pro...To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a probe.The DNA was successfully constructed on a 6xHis-tagged prokaryotic expression plasmid.The non-GFP labeled MIM-I-BAR encoding plasmid was also constructed as a control. Being successfully transformed into BL21 (DE3 )cells,the GFP-conjugated MIM-I-BAR (MIM-I-BAR-GFP ) exhibits strong visible fluorescence,and the expression product can be easily detected by visual inspection, a fluorescence microscope, Western blot or ultraviolet and visible spectrophotometer. Moreover, examination of expression efficiency under various culture conditions revealed that the MIM-I-BAR-GFP gene has a high protein yield at 10 ℃,but not at the culture temperature of 37 ℃.This property is much different from that of the non-fluorescent MIM-I-BAR gene. This optimal expression condition is also proved to be feasible for protein production in midi-scale. The fluorescent recombinant MIM-I-BAR-GFP protein can serve as a useful tool in scientific research, biomedical application and pharmaceutical development.展开更多
基金The National Basic Research Program of China(973Program)(No.2011CB933503)the National Natural Science Foundation of China for Key Project of International Cooperation(No.61420106012)China Postdoctoral Science Foundation(No.2013M541592)
文摘To achieve a visible inverse Bin-amphiphysin-Rvs (I-BAR)domain recombinant of missing in metastasis (MIM) protein,the green fluorescent protein (GFP)encoding gene was cloned at the terminal of MIM-I-BAR as a probe.The DNA was successfully constructed on a 6xHis-tagged prokaryotic expression plasmid.The non-GFP labeled MIM-I-BAR encoding plasmid was also constructed as a control. Being successfully transformed into BL21 (DE3 )cells,the GFP-conjugated MIM-I-BAR (MIM-I-BAR-GFP ) exhibits strong visible fluorescence,and the expression product can be easily detected by visual inspection, a fluorescence microscope, Western blot or ultraviolet and visible spectrophotometer. Moreover, examination of expression efficiency under various culture conditions revealed that the MIM-I-BAR-GFP gene has a high protein yield at 10 ℃,but not at the culture temperature of 37 ℃.This property is much different from that of the non-fluorescent MIM-I-BAR gene. This optimal expression condition is also proved to be feasible for protein production in midi-scale. The fluorescent recombinant MIM-I-BAR-GFP protein can serve as a useful tool in scientific research, biomedical application and pharmaceutical development.