The traditional gas purification techniques such as wet gas desulfurization, with their advantages of large-scale implementation and maturity, have still been widely used. However, the main drawback of these technique...The traditional gas purification techniques such as wet gas desulfurization, with their advantages of large-scale implementation and maturity, have still been widely used. However, the main drawback of these techniques is the low transfer efficiency, which normally needs towers as tall as tens of meters to remove the pollutants. Therefore, new technologies which could enhance the mass transfer efficiency and are less energy-intensive are highly desirable. As a process intensification technology, high-gravity technology, which is carried out in a rotating packed bed(RPB), has recently demonstrated great potential for industrial applications due to its high mass transfer efficiency, energy-saving, and smaller volume. This consequently provides higher efficiency in toxic gas removal, and can significantly reduce the investment and operation costs. In this review, the mechanism,characteristics, recent developments, and the industry applications of high-gravity technologies in gas purifications, such as hydrogen sulfide, nitrogen oxide, carbon dioxide, sulfur dioxide, volatile organic compounds and nanoparticle removal are discussed, most of the demonstration projects and practical application examples in gas purification come from China. The perspective and prospective of this technology in gas purification and other fields are also briefly discussed.展开更多
Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental ...Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental benefits of pavements.To promote the low-carbon development of ultrathin overlays,this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions.Firstly,the skid resistance,noise reduction,rutting resistance,and crack resistance of ultrathin overlays were evaluated.The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%.The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB.The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%.Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%.Due to the thinner thickness and better road performance,the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40%compared with conventional overlays.Secondly,several environmentally friendly functions of ultra-thin overlay were investigated,including snow melting and deicing,exhaust gas purification and pavement cooling.The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface.Therefore,the snow melting effect of self-ice-melting was better.In addition,the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50%of the exhaust gas.The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1℃.The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8℃.In addition,numerous typical global engineering applications of functional ultra-thin overlay were summarized.This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.展开更多
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as m...The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as mitigating the power crisis,minimizing water pollution,and improving the purification and desalination of seawater,rivers/lakes,and wastewater.Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications.This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices,specifically focusing on their applications in water purification and desalination.This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials,such as cellulose nanofibers derived from different sources,carbonized wood materials,and two-dimensional(2D)and 3D cellulosic-based materials from various sources,as well as advanced cellulosic materials,including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes.The focus is on exploring the potential applications of these materials in ISSG devices for water desalination,purification,and treatment.The function,advantages,and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion.In addition,the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination,purification,and treatment were also emphasized.展开更多
The direct one-step separation of polymer-grade C_(2)H_(4) from complex light hydrocarbon mixtures has high industrial significance but is very challenging.Herein,an ethylene-adsorption-weakening strategy is applied f...The direct one-step separation of polymer-grade C_(2)H_(4) from complex light hydrocarbon mixtures has high industrial significance but is very challenging.Herein,an ethylene-adsorption-weakening strategy is applied for precise regulation of the pore geometry of four tailor-made metal–organic frameworks(MOFs)with pillar-layered structures,dubbed TYUT-10/11/12/13.Based on its pore geometry design and functional group regulation,TYUT-12 exhibits exceptional selective adsorption selectivity toward C_(3)H_(8),C_(3)H_(6),C_(2)H_(6),C_(2)H_(2),and CO_(2) over C_(2)H_(4);its C_(2)H_(6)/C_(2)H_(4) adsorption selectivity reaches 4.56,surpassing the record value of 4.4 by Fe_(2)(O_(2))(dobdc)(dobdc^(4-)=2,5-dioxido-1,4-benzenedicarboxylate).The weak p–p stacking binding affinity toward C_(2)H_(4) in TYUT-12 is clearly demonstrated through a combination of neutron powder diffraction measurements and theoretical calculations.Breakthrough experiments demonstrate that C_(2)H_(4) can be directly obtained from binary,ternary,quaternary,and six-component light hydrocarbon mixtures with over 99.95%purity.展开更多
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th...The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.展开更多
Gallium isotope is a potential geochemical tool for understanding planetary processes,environmental pollution,and ore deposit formation.The reported Ga isotope compositions(δ^(71)Ga NIST994 values)of some internation...Gallium isotope is a potential geochemical tool for understanding planetary processes,environmental pollution,and ore deposit formation.The reported Ga isotope compositions(δ^(71)Ga NIST994 values)of some international geological standards,such as BCR-2 and BHVO-2 basalts,exhibit inconsistencies between diff erent laboratories.During mass spectrometry analysis,we found thatδ^(71)Ga NIST994 values of geological standards with or without the correction of the interference of^(138)Ba^(2+)(mass/charge ratio=69)on 69 Ga show signifi cant isotope off sets,and thus effi cient separation of Ba and correcting the interference of^(138)Ba^(2+)are both crucial to obtain accurateδ^(71)Ga values.By comparingδ^(71)Ga NIST994 values(relative to NIST SRM 994 Ga)of the same geostandards from diff erent laboratories,we suggest that the isotopic heterogeneity from NIST SRM 994 Ga is one of the key reasons for the inconsistencies inδ^(71)Ga NIST994 values of BCR-2 and BHVO-2.To facilitate inter-laboratory comparisons,we measured the Ga isotopic compositions of 11 geological reference materials(including Pb-Zn ore,bauxite,igneous rocks,and loess)and two Ga solution standards(NIST SRM 3119a and Alfa Aesar).Theδ^(71)Ga NIST994 andδ^(71)Ga IPGP values of these reference materials vary from 1.12‰to 2.63‰and−0.13‰to 1.38‰,respectively,and can be used to evaluate the precision and accuracy of Ga isotope data from diff erent laboratories.展开更多
The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar co...The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).展开更多
High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current puri...High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.展开更多
Nowadays, increasing emissions of hazardous chemicals cause serious environmental pollution. The advanced oxidation processes (AOPs), which produce numbers of reactive oxygen species (ROS), are one of the most widely ...Nowadays, increasing emissions of hazardous chemicals cause serious environmental pollution. The advanced oxidation processes (AOPs), which produce numbers of reactive oxygen species (ROS), are one of the most widely used technologies for degrading refractory pollutants in aqueous phase. Among these, Fenton reaction including both homogeneous and heterogeneous processes, has received increasing attention for water treatment. In this review, various nanomaterials with different size such as nanocrystals, nanoparticles (e.g., iron-based minerals, bimetallic oxides, zero-valent iron, quantum dots) and metal-based single atom catalysts (SACs) applied in homogeneous and heterogeneous Fenton reactions, as well as the corresponding catalytic mechanisms will be systematically summarized. Several factors including the morphology, chemical composition, geometric/electronic structures influence the catalytical behavior simultaneously. Here, the recent research advancement including the advantages and further challenges in homogeneous and heterogeneous Fenton system will be introduced in detail. Furthermore, developments for different nanomaterials, from nanocrystals, nanoparticles (minerals, bimetallic oxides represented by Fe-based catalysts, and nanosized zero valent iron materials) to SACs will be discussed. Some representative catalysts for Fenton reaction and their applications will be presented. In addition, commonly-used supports (e.g., graphene oxide, g-C3N4, and carbon nanotubes) and metal-organic frameworks (MOFs)/derivatives and metal-support interaction for improving Fenton-like performance will be introduced. Finally, different types of catalysts for Fenton reaction are compared and their practical application and operational costs are summarized.展开更多
The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)us...The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system.展开更多
Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity w...Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity was measured.Then,the crude extract mixture was separated and purified using a Sephadex LH-20 gel,and the antioxidant activity of the purified products was determined.Human umbilical vein endothelial human umbilical vein endothelial cells(HUVEC)cells were treated with 35 mmol/L glucose to construct a model of oxidative stress.Then,the cells were treated with the active component to observe whether the products of T.edulis could have a good protective effect on HUVEC cells induced by glucose.Transcriptome analysis was also performed on HUVEC cells after same treatment to explore the possible mechanism of the component F2 protecting HUVEC cells from oxidative stress induced by high glucose.The results showed that component F2 obtained from T.edulis has strong antioxidant activity.Moreover,F2 can play a strong antioxidant protective role in HUVEC cells.Meanwhile,the gene expression of heme oxygenase 1(HO-1),γ-glutamyl cysteine ligase catalytic subunit(GCLC)and NAD(P)H quinone oxidoreductase-1(NQO1)in HUVEC cells was up-regulated after treated with F2.This study provides reference value for the further development and application of T.edulis and the d evelopment of functional food.展开更多
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha...Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.展开更多
Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded or...Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.展开更多
BACKGROUND Aconitine poisoning is highly prone to causing malignant arrhythmias.The elimination of aconitine from the body takes a considerable amount of time,and during this period,patients are at a significant risk ...BACKGROUND Aconitine poisoning is highly prone to causing malignant arrhythmias.The elimination of aconitine from the body takes a considerable amount of time,and during this period,patients are at a significant risk of death due to malignant arrhythmias associated with aconitine poisoning.CASE SUMMARY A 30-year-old male patient was admitted due to accidental ingestion of aconitinecontaining drugs.Upon arrival at the emergency department,the patient intermittently experienced malignant arrhythmias including ventricular tachycardia,ventricular fibrillation,ventricular premature beats,and cardiac arrest.Emergency interventions such as cardiopulmonary resuscitation and defibrillation were promptly administered.Additionally,veno-arterial extracorporeal membrane oxygenation(VA-ECMO)therapy was initiated.Successful resuscitation was achieved before ECMO placement,but upon initiation of ECMO,the patient experienced recurrent malignant arrhythmias.ECMO was utilized to maintain hemodynamics and respiration,while continuous blood purification therapy for toxin clearance,mechanical ventilation,and hypothermic brain protection therapy were concurrently administered.On the third day of VA-ECMO support,the patient’s respiratory and hemodynamic status stabilized,with only frequent ventricular premature beats observed on electrocardiographic monitoring,and echocardiography indicated recovery of cardiac contractile function.On the fourth day,a significant reduction in toxin levels was observed,along with stable hemodynamic and respiratory functions.Following a successful pump-controlled retrograde trial occlusion test,ECMO assistance was terminated.The patient gradually improved postoperatively and achieved recovery.He was discharged 11 days later.CONCLUSION VA-ECMO can serve as a bridging resuscitation technique for patients with reversible malignant arrhythmias.展开更多
Atractylodis Rhizoma comes from the dry rhizome of Atractylis lancea or Atractylodes chinensis in the Compositae family,and it is suitable for preventing and treating diseases such as cold,edema,night blindness and rh...Atractylodis Rhizoma comes from the dry rhizome of Atractylis lancea or Atractylodes chinensis in the Compositae family,and it is suitable for preventing and treating diseases such as cold,edema,night blindness and rheumatic arthralgia.Atractylodin is the main active component extracted and isolated from Atractylodis Rhizoma.A large number of studies have found that atractylodin has excellent drug activity in improving gastrointestinal emptying,anti-inflammation,inhibiting malignant tumor and reducing blood lipid.In this paper,the purification process and pharmacological activity of Atractylodin were summarized to provide a theoretical basis for basic research,clinical application and further development and utilization of atractylodin.展开更多
This work investigates the influence of the type sludge on drainage, plant development, purification performances and biosolids quality. Drainage properties were measured through the frequency of clogging, the percent...This work investigates the influence of the type sludge on drainage, plant development, purification performances and biosolids quality. Drainage properties were measured through the frequency of clogging, the percentage of leachate recovered and the dryness of accumulated sludge. Plant development was measured through the density, the height and the stem diameter. Purification performance was evaluated from the reduction rate. Biosolids quality was measured after 3 months of maturation. The results show that the clogging frequencies were 9.5%;0% and 3.7%;the volume of leachate recovered was 42.2%;20.4% and 24.7% and, the dryness was 33.4%;61.1% and 52.4% for FS-ST, FS-STT and SS respectively. Plants densities were about, with densities 197.1, 171.3 and 178.3 plants/m2 in beds fed respectively with FS-ST, FS-STT and SS. Despite the high removal rates, the concentrations of pollutants in the leachates are above the Senegalese standard NS 05-061 for discharge into the environment. The biosolids are all mature with C/N and NH4+/NO3?ratios lower than 12 and 1 respectively. The biosolids are also rich in organic and mineral elements. The concentrations of Ascaris eggs are higher than the WHO recommendations. These biosolids should be stored for additional time or composted.展开更多
Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep...Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.展开更多
This paper reviews the purification process,content determination methods and pharmacological action of Andrographolide,aiming to provide new ideas for the subsequent study of Andrographolide and its related drug deve...This paper reviews the purification process,content determination methods and pharmacological action of Andrographolide,aiming to provide new ideas for the subsequent study of Andrographolide and its related drug development and application.展开更多
基金Supported by the National Natural Science Foundation of China(U1610106)Shanxi Excellent Talent Science and Technology Innovation Project(201705D211011)+1 种基金Specialized Research Fund for Sanjin Scholars Program of Shanxi Province(201707)North University of China Fund for Distinguished Young Scholars(201701)
文摘The traditional gas purification techniques such as wet gas desulfurization, with their advantages of large-scale implementation and maturity, have still been widely used. However, the main drawback of these techniques is the low transfer efficiency, which normally needs towers as tall as tens of meters to remove the pollutants. Therefore, new technologies which could enhance the mass transfer efficiency and are less energy-intensive are highly desirable. As a process intensification technology, high-gravity technology, which is carried out in a rotating packed bed(RPB), has recently demonstrated great potential for industrial applications due to its high mass transfer efficiency, energy-saving, and smaller volume. This consequently provides higher efficiency in toxic gas removal, and can significantly reduce the investment and operation costs. In this review, the mechanism,characteristics, recent developments, and the industry applications of high-gravity technologies in gas purifications, such as hydrogen sulfide, nitrogen oxide, carbon dioxide, sulfur dioxide, volatile organic compounds and nanoparticle removal are discussed, most of the demonstration projects and practical application examples in gas purification come from China. The perspective and prospective of this technology in gas purification and other fields are also briefly discussed.
基金the National Key Research and Development Program of China(2022YFE0137300)the National Natural Science Foundation of China(52078018)the German Research Foundation(SFB/TRR 339 and 453596084).
文摘Highway maintenance mileage reached 5.25 million kilometers in China by 2021.Ultra-thin overlay is one of the most commonly used maintenance technologies,which can significantly enhance the economic and environmental benefits of pavements.To promote the low-carbon development of ultrathin overlays,this paper mainly studied the mechanism and influencing factors of several ultra-thin overlay functions.Firstly,the skid resistance,noise reduction,rutting resistance,and crack resistance of ultrathin overlays were evaluated.The results indicated that the high-quality aggregates improved the skid and rutting resistance of ultra-thin overlay by 5%-20%.The optimized gradations and modified binders reduced noise of ultra-thin overlay by 0.4-6.0 dB.The high viscosity modified binders improved the rutting resistance of ultra-thin overlay by about 10%-130%.Basalt fiber improved the cracking resistance of ultra-thin overlay by more than 20%.Due to the thinner thickness and better road performance,the performance-based engineering cost of ultra-thin overlay was reduced by about 30%-40%compared with conventional overlays.Secondly,several environmentally friendly functions of ultra-thin overlay were investigated,including snow melting and deicing,exhaust gas purification and pavement cooling.The lower thickness of ultra-thin overlay was conducive to the diffusion of chloride-based materials to the pavement surface.Therefore,the snow melting effect of self-ice-melting was better.In addition,the ultra-thin overlay mixture containing photocatalytic materials could decompose 20%-50%of the exhaust gas.The colored ultra-thin overlay was able to reduce the temperature of the pavement by up to 8.1℃.The temperature difference between the upper and lower surfaces of the ultra-thin overlay containing thermal resistance materials could reach up to 12.8℃.In addition,numerous typical global engineering applications of functional ultra-thin overlay were summarized.This review can help better understand the functionality of ultra-thin overlays and promote the realization of future multi-functional and low-carbon road maintenance.
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
基金This study was supported by Key Research and Development Program of Hubei Province(No.2022ACA002).
文摘The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as mitigating the power crisis,minimizing water pollution,and improving the purification and desalination of seawater,rivers/lakes,and wastewater.Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications.This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices,specifically focusing on their applications in water purification and desalination.This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials,such as cellulose nanofibers derived from different sources,carbonized wood materials,and two-dimensional(2D)and 3D cellulosic-based materials from various sources,as well as advanced cellulosic materials,including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes.The focus is on exploring the potential applications of these materials in ISSG devices for water desalination,purification,and treatment.The function,advantages,and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion.In addition,the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination,purification,and treatment were also emphasized.
基金supported by National Key Research and Development Program of China(2022YFB3806800)National Natural Science Foundation of China(22278288 and 22090062).
文摘The direct one-step separation of polymer-grade C_(2)H_(4) from complex light hydrocarbon mixtures has high industrial significance but is very challenging.Herein,an ethylene-adsorption-weakening strategy is applied for precise regulation of the pore geometry of four tailor-made metal–organic frameworks(MOFs)with pillar-layered structures,dubbed TYUT-10/11/12/13.Based on its pore geometry design and functional group regulation,TYUT-12 exhibits exceptional selective adsorption selectivity toward C_(3)H_(8),C_(3)H_(6),C_(2)H_(6),C_(2)H_(2),and CO_(2) over C_(2)H_(4);its C_(2)H_(6)/C_(2)H_(4) adsorption selectivity reaches 4.56,surpassing the record value of 4.4 by Fe_(2)(O_(2))(dobdc)(dobdc^(4-)=2,5-dioxido-1,4-benzenedicarboxylate).The weak p–p stacking binding affinity toward C_(2)H_(4) in TYUT-12 is clearly demonstrated through a combination of neutron powder diffraction measurements and theoretical calculations.Breakthrough experiments demonstrate that C_(2)H_(4) can be directly obtained from binary,ternary,quaternary,and six-component light hydrocarbon mixtures with over 99.95%purity.
基金supported by the National Natural Science Foundation of China(52074180)the Science and Technology Major Project of Yunnan Province(202302AB080020)+2 种基金the Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2023-Z07)the Science and Technology Commission of Shanghai Municipality(19DZ2270200)the Program for Professor of Special Appointment(Eastern Scholar)at SIHL,Shanghai Sailing Program(19YF1416500).
文摘The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.
基金the National Natural Science Foundation of China(Grant Nos.42273016 and 41573007)a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry。
文摘Gallium isotope is a potential geochemical tool for understanding planetary processes,environmental pollution,and ore deposit formation.The reported Ga isotope compositions(δ^(71)Ga NIST994 values)of some international geological standards,such as BCR-2 and BHVO-2 basalts,exhibit inconsistencies between diff erent laboratories.During mass spectrometry analysis,we found thatδ^(71)Ga NIST994 values of geological standards with or without the correction of the interference of^(138)Ba^(2+)(mass/charge ratio=69)on 69 Ga show signifi cant isotope off sets,and thus effi cient separation of Ba and correcting the interference of^(138)Ba^(2+)are both crucial to obtain accurateδ^(71)Ga values.By comparingδ^(71)Ga NIST994 values(relative to NIST SRM 994 Ga)of the same geostandards from diff erent laboratories,we suggest that the isotopic heterogeneity from NIST SRM 994 Ga is one of the key reasons for the inconsistencies inδ^(71)Ga NIST994 values of BCR-2 and BHVO-2.To facilitate inter-laboratory comparisons,we measured the Ga isotopic compositions of 11 geological reference materials(including Pb-Zn ore,bauxite,igneous rocks,and loess)and two Ga solution standards(NIST SRM 3119a and Alfa Aesar).Theδ^(71)Ga NIST994 andδ^(71)Ga IPGP values of these reference materials vary from 1.12‰to 2.63‰and−0.13‰to 1.38‰,respectively,and can be used to evaluate the precision and accuracy of Ga isotope data from diff erent laboratories.
基金supported by the National Natural Science Foundation of China(22078281)。
文摘The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC).
基金Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant Nos.2019A1515110302 and 2022A1515140003)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2020B010189001,2021B0301030002,2019B010931001,and 2018B030327001)+5 种基金the National Natural Science Foundation of China(Grant Nos.52172035,52025023,52322205,51991342,52021006,51991344,52100115,11888101,92163206,12104018,and 12274456)the National Key Research and Development Program of China(Grant Nos.2021YFB3200303,2022YFA1405600,2018YFA0703700,2021YFA1400201,and 2021YFA1400502)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Pearl River Talent Recruitment Program of Guangdong Province,China(Grant No.2019ZT08C321)China Postdoctoral Science Foundation(Grant Nos.2020T130022 and 2020M680178)the Science and Technology Plan Project of Liaoning Province,China(Grant No.2021JH2/10100012).
文摘High-purity copper(Cu) with excellent thermal and electrical conductivity, is crucial in modern technological applications, including heat exchangers, integrated circuits, and superconducting magnets. The current purification process is mainly based on the zone/electrolytic refining or anion exchange, however, which excessively relies on specific integrated equipment with ultra-high vacuum or chemical solution environment, and is also bothered by external contaminants and energy consumption. Here we report a simple approach to purify the Cu foils from 99.9%(3N) to 99.99%(4N) by a temperature-gradient thermal annealing technique, accompanied by the kinetic evolution of single crystallization of Cu.The success of purification mainly relies on(i) the segregation of elements with low effective distribution coefficient driven by grain-boundary movements and(ii) the high-temperature evaporation of elements with high saturated vapor pressure.The purified Cu foils display higher flexibility(elongation of 70%) and electrical conductivity(104% IACS) than that of the original commercial rolled Cu foils(elongation of 10%, electrical conductivity of ~ 100% IACS). Our results provide an effective strategy to optimize the as-produced metal medium, and therefore will facilitate the potential applications of Cu foils in precision electronic products and high-frequency printed circuit boards.
基金financially supported by the National Natural Science Foundation of China(Nos.21625102,21971017 and 21906007)the National Key Research and Development Program of China(No.2020YFB1506300)the Beijing Institute of Technology Research Fund Program.
文摘Nowadays, increasing emissions of hazardous chemicals cause serious environmental pollution. The advanced oxidation processes (AOPs), which produce numbers of reactive oxygen species (ROS), are one of the most widely used technologies for degrading refractory pollutants in aqueous phase. Among these, Fenton reaction including both homogeneous and heterogeneous processes, has received increasing attention for water treatment. In this review, various nanomaterials with different size such as nanocrystals, nanoparticles (e.g., iron-based minerals, bimetallic oxides, zero-valent iron, quantum dots) and metal-based single atom catalysts (SACs) applied in homogeneous and heterogeneous Fenton reactions, as well as the corresponding catalytic mechanisms will be systematically summarized. Several factors including the morphology, chemical composition, geometric/electronic structures influence the catalytical behavior simultaneously. Here, the recent research advancement including the advantages and further challenges in homogeneous and heterogeneous Fenton system will be introduced in detail. Furthermore, developments for different nanomaterials, from nanocrystals, nanoparticles (minerals, bimetallic oxides represented by Fe-based catalysts, and nanosized zero valent iron materials) to SACs will be discussed. Some representative catalysts for Fenton reaction and their applications will be presented. In addition, commonly-used supports (e.g., graphene oxide, g-C3N4, and carbon nanotubes) and metal-organic frameworks (MOFs)/derivatives and metal-support interaction for improving Fenton-like performance will be introduced. Finally, different types of catalysts for Fenton reaction are compared and their practical application and operational costs are summarized.
基金supported by the National Science Centre of Poland within OPUS 16 Project,no.2018/31/B/ST8/01172。
文摘The sessile drop method was applied to the experimental investigation of the wetting and spreading behaviors of liquid Mg drops on pure Ni substrates.For comparison,the experiments were performed in two variants:(1)using the Capillary Purification(CP)procedure,which allows the non-contact heating and squeezing of a pure oxide-free Mg drop;(2)by classical Contact Heating(CH)procedure.The high-temperature tests were performed under isothermal conditions(CP:760℃for 30 s;CH:715℃for 300 s)using Ar+5 wt%H_(2) atmosphere.During the sessile drop tests,images of the Mg/Ni couples were recorded by CCD cameras(57 fps),which were then applied to calculate the contact angles of metal/substrate couples.Scanning and transmission electron microscopy analyses,both coupled with energy-dispersive X-ray spectroscopy,were used for detailed structural characterization of the solidified couples.It was found that an oxide-free Mg drop obtained by the CP procedure showed a wetting phenomenon on the Ni substrate(an average contact angleθ<90°in<1 s),followed by fast spreading and good wetting over the Ni substrate(θ_((CP))~20°in 5 s)to form a final contact angle ofθ_(f(CP))~18°.In contrast,a different wetting behavior was observed for the CH procedure,where the unavoidable primary oxide film on the Mg surface blocked the spreading of liquid Mg showing apparently non-wetting behavior after 300 s contact at the test temperature.However,in both cases,the deep craters formed in the Ni substrates under the Mg drops and significant change in the structure of initially pure Mg drops to Mg-Ni alloys suggest a strong dissolution of Ni in liquid Mg and apparent values of the final contact angles measured for the Mg/Ni system.
基金supported by the Open Grant of Beijing Advanced Innovation Center for Food Nutrition and Human Health(20182024)National Natural Science Foundation of China(31370104)+4 种基金The Natural Science Foundation of Hunan Province,China(2021JJ30029)the Taishan Scholar Program of Shandong Province,China(tsqn201909168)“Double Hundred”Program for Foreign Experts of Shandong Province,China(WST2017004)Hunan Province Postgraduate Education Innovation Project and Professional Capacity Enhancement(CX20200297)Project the Fundamental Research Funds for the Central Universities of Central South University(2020zzts424,2020zzts422)。
文摘Plant extracts from natural sources are an excellent choice for food additives and natural antioxidants.In this study,the active components of Tulipa edulis were extracted and analysed,and their antioxidant capacity was measured.Then,the crude extract mixture was separated and purified using a Sephadex LH-20 gel,and the antioxidant activity of the purified products was determined.Human umbilical vein endothelial human umbilical vein endothelial cells(HUVEC)cells were treated with 35 mmol/L glucose to construct a model of oxidative stress.Then,the cells were treated with the active component to observe whether the products of T.edulis could have a good protective effect on HUVEC cells induced by glucose.Transcriptome analysis was also performed on HUVEC cells after same treatment to explore the possible mechanism of the component F2 protecting HUVEC cells from oxidative stress induced by high glucose.The results showed that component F2 obtained from T.edulis has strong antioxidant activity.Moreover,F2 can play a strong antioxidant protective role in HUVEC cells.Meanwhile,the gene expression of heme oxygenase 1(HO-1),γ-glutamyl cysteine ligase catalytic subunit(GCLC)and NAD(P)H quinone oxidoreductase-1(NQO1)in HUVEC cells was up-regulated after treated with F2.This study provides reference value for the further development and application of T.edulis and the d evelopment of functional food.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
文摘Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.
基金support from the Scientific and Technological Bases and Talents of Guangxi(Guike AD21238027)support from Doctoral and master's degree innovation projects+1 种基金T.Liu thanks the Training Project of High-level Professional and Technical Talents of Guangxi University and Natural Science and Technology Innovation Development Multiplication Program of Guangxi University(2022BZRC006)D.Xue thanks the support from International(regional)Cooperation and Exchange Projects of the National Natural Science Foundation of China(52220105010).
文摘Purification of emerging heavy metal antimony contaminated water based on advanced ingenious strategies.An activated modified coconut shell charcoal(CSC)was synthesized and evaluated as a substrate-supported loaded organic photovoltaic material,PM6:PYIT:PM6-b-PYIT,to prepare a surprisingly highly efficient,stable,environmentally friendly,and recyclable organic photocatalyst(CSC–N–P.P.P),which showed excellent effects on the simultaneous removal of Sb(Ⅲ)and Sb(Ⅴ).The removal efficiency of CSC-N-P.P.P on Sb(Ⅲ)and Sb(Ⅴ)reached an amazing 99.9%in quite a short duration of 15 min.At the same time,under ppb level and indoor visible light(~1 W m^(2)),it can be treated to meet the drinking water standards set by the European Union and the U.S.National Environmental Protection Agency in 5 min,and even after 25 cycles of recycling,the efficiency is still maintained at about 80%,in addition to the removal of As(Ⅲ),Cd(Ⅱ),Cr(Ⅵ),and Pb(Ⅱ)can also be realized.The catalyst not only solves the problems of low reuse rate,difficult structure adjustment and high energy consumption of traditional photocatalysts but also has strong applicability and practical significance.The pioneering approach provides a much-needed solution strategy for removing highly toxic heavy metal antimony pollution from the environment.
文摘BACKGROUND Aconitine poisoning is highly prone to causing malignant arrhythmias.The elimination of aconitine from the body takes a considerable amount of time,and during this period,patients are at a significant risk of death due to malignant arrhythmias associated with aconitine poisoning.CASE SUMMARY A 30-year-old male patient was admitted due to accidental ingestion of aconitinecontaining drugs.Upon arrival at the emergency department,the patient intermittently experienced malignant arrhythmias including ventricular tachycardia,ventricular fibrillation,ventricular premature beats,and cardiac arrest.Emergency interventions such as cardiopulmonary resuscitation and defibrillation were promptly administered.Additionally,veno-arterial extracorporeal membrane oxygenation(VA-ECMO)therapy was initiated.Successful resuscitation was achieved before ECMO placement,but upon initiation of ECMO,the patient experienced recurrent malignant arrhythmias.ECMO was utilized to maintain hemodynamics and respiration,while continuous blood purification therapy for toxin clearance,mechanical ventilation,and hypothermic brain protection therapy were concurrently administered.On the third day of VA-ECMO support,the patient’s respiratory and hemodynamic status stabilized,with only frequent ventricular premature beats observed on electrocardiographic monitoring,and echocardiography indicated recovery of cardiac contractile function.On the fourth day,a significant reduction in toxin levels was observed,along with stable hemodynamic and respiratory functions.Following a successful pump-controlled retrograde trial occlusion test,ECMO assistance was terminated.The patient gradually improved postoperatively and achieved recovery.He was discharged 11 days later.CONCLUSION VA-ECMO can serve as a bridging resuscitation technique for patients with reversible malignant arrhythmias.
基金Supported by Innovation and Entrepreneurship Project for College Students in Heilongjiang Province(S202210223119)the Central Fund Support for the Talent Training Project of Local University Reform and Development(2020GSP16).
文摘Atractylodis Rhizoma comes from the dry rhizome of Atractylis lancea or Atractylodes chinensis in the Compositae family,and it is suitable for preventing and treating diseases such as cold,edema,night blindness and rheumatic arthralgia.Atractylodin is the main active component extracted and isolated from Atractylodis Rhizoma.A large number of studies have found that atractylodin has excellent drug activity in improving gastrointestinal emptying,anti-inflammation,inhibiting malignant tumor and reducing blood lipid.In this paper,the purification process and pharmacological activity of Atractylodin were summarized to provide a theoretical basis for basic research,clinical application and further development and utilization of atractylodin.
文摘This work investigates the influence of the type sludge on drainage, plant development, purification performances and biosolids quality. Drainage properties were measured through the frequency of clogging, the percentage of leachate recovered and the dryness of accumulated sludge. Plant development was measured through the density, the height and the stem diameter. Purification performance was evaluated from the reduction rate. Biosolids quality was measured after 3 months of maturation. The results show that the clogging frequencies were 9.5%;0% and 3.7%;the volume of leachate recovered was 42.2%;20.4% and 24.7% and, the dryness was 33.4%;61.1% and 52.4% for FS-ST, FS-STT and SS respectively. Plants densities were about, with densities 197.1, 171.3 and 178.3 plants/m2 in beds fed respectively with FS-ST, FS-STT and SS. Despite the high removal rates, the concentrations of pollutants in the leachates are above the Senegalese standard NS 05-061 for discharge into the environment. The biosolids are all mature with C/N and NH4+/NO3?ratios lower than 12 and 1 respectively. The biosolids are also rich in organic and mineral elements. The concentrations of Ascaris eggs are higher than the WHO recommendations. These biosolids should be stored for additional time or composted.
文摘Bio-silica issued from diatom, a microalgae, is attracted increasing attention in material science thanks to its peculiar nanoarchitecture and related properties with versatile applications. The present work is a deep analysis on morphological and chemical properties of bio-silica issued from fossil origin (diatomaceous earth) and living one (algal paste). An optimization in purification protocol was performed to obtain multiparous bio-silica from its raw media with keeping its original shape entirely. Multiple characterization methods as scanning electronic microscopy (SEM), infrared spectroscopy, x-ray diffraction (DRX), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), nitrogen adsorption and inverse gas chromatography (IGC), were used to check the purification protocol efficiency as well as to gather accurate information on morphology and chemical composition of diatom material obtained in large amount.
基金Supported by Heilongjiang Province Key Research and Development Plan Guid-ance Project(GZ20220039),Central Support for Local Universities Reform and Development Fund Talent Training Project(2020GSP16).
文摘This paper reviews the purification process,content determination methods and pharmacological action of Andrographolide,aiming to provide new ideas for the subsequent study of Andrographolide and its related drug development and application.