The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an ...This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).展开更多
To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three...To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.展开更多
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling lo...Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-conditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irradiance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the design weather data for the three different constructions is not kept constant.展开更多
The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different ...The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different dehumidifiers such as desiccant column and desiccant wheel were investigated. The ANSYS and TRASYS software were used to predict the results of dehumidifiers and the desiccant cooling systems, respectively. The desiccant bed contained approximately 15 kg of silica-gel, with 3 mm average diameter. Results indicated that the pressure drop and the adsorption rate of desiccant column are usually higher than those of the desiccant wheel. The feasible and practical adsorption rate of desiccant wheel was 0.102 kgw/h at air flow rate 1.0 kg/min, regenerated air temperature of 55?C and at a wheel speed of 2.5 rpm. The humidity ratio of conditioning space and cooling load of split-type air conditioner was decreased to 0.002 kgw/kgda (14%) and 0.71 kWth (19.26%), respectively. Consequently, the thermal comfort was improved from 0.5 PMV (10.12% PPD) to 0.3 PMV (7.04% PPD).展开更多
An energy-saving control strategy based on predictive control for central air-conditioning systems is proposed in this paper. The cold load model is developed to describe the dynamic characteristics of temperature con...An energy-saving control strategy based on predictive control for central air-conditioning systems is proposed in this paper. The cold load model is developed to describe the dynamic characteristics of temperature control systems, and then parameters in the cold load model and in the central air-conditioning system model are estimated. Generalized predictive control (GPC) is used to establish an optimization model to minimize the consumption of energy and the control error of temperature. The simulated annealing (SA) algorithm, combined with quadratic programming, is adopted to solve the optimal problem. Contrasted with the simulation of traditional PID control, the results prove the effectiveness of this proposed strategy.展开更多
As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possi...As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product de- signing.Lots of information in the process of this research is fuzzy and uncertain,but traditional QFD can not deal with it well. Fuzzy theory can solve the problem.So a fuzzy model for analyzing product competitive power is formulated in this paper to im- prove traditional QFD,after that it is applied to analyze air-conditioning competitive power.When air-conditioning competitive power is analyzed using this model,firstly the importance weight of the customer requirements o fair-conditioning is determined us- ing the Analytic Hierarchy Process (AHP) weighting process,then air-conditloning competitive power is evaluated using fuzzy comprehensive evaluation.It is proved that the model is feasible and has good applicability.展开更多
An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inv...An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.展开更多
The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Differen...The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.展开更多
Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipmen...Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.展开更多
Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors ...Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.展开更多
Solar energy powered organic Rankine cycle vapor compression cycle(ORC-VCC)is a good alternative to convert solar heat into a cooling effect.In this study,an ORC-VCC system driven by solar energy combined with electri...Solar energy powered organic Rankine cycle vapor compression cycle(ORC-VCC)is a good alternative to convert solar heat into a cooling effect.In this study,an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous,and an office building located in Guangzhou,China is selected as a case study.The results show that beam solar radiation and generation temperature have considerable effects on the system performance.There is an optimal generation temperature at which the system achieves optimum performance.Also,as a key indicator,the cooling power per square meter collector should be considered in the hybrid solar cooling system in design process.Compared to the vapor compression cooling system,the hybrid cooling system can save almost 68.23%of electricity consumption.展开更多
The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicato...The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicators among different standards requirements, and the requirements of each vehicle procurement contracts are also different. The design of air-conditioning become difficult above these. In this paper, the fresh air volume of different type railway vehicles is analyzed from health and equipment electricity consumption according to the railway vehicles air-conditioning system standard requirements in domestic and abroad. Some advises for designing air-conditioning system of railway vehicles through the fresh air volume calculation and comparison for domestic air-conditioning system of railway vehicles was provided.展开更多
[Objective] The aim of this study was to improve the purification and protective potency of HP-PRRS inactivated vaccine. [Method] HP-PRRS virus that had been multiplied inside Marc-145 cells was collected and concentr...[Objective] The aim of this study was to improve the purification and protective potency of HP-PRRS inactivated vaccine. [Method] HP-PRRS virus that had been multiplied inside Marc-145 cells was collected and concentrated 50 times and then inactivated. Complete virions were separated and collected by chromatography with Sepharose 4 Fast Flow. Oil adjuvant was added to prepare purified inactivated vaccine. [Result] Viral protein was separated from other proteins by purification and the viral protein contents ranged from 76.7% to 82.4%, and 96% of the expected serum proteins were removed. Protective potency of purified vaccine was above 4/5 and positive conversion rate of antibody was over 86%, both higher than that of unpurified vaccine. The differences were significant. [Conclusion] The experiment il-lustrated that the immune efficacy of vaccine can be enhanced through concentrat- ing and purifying, while the non-viral protein can be removed, so that allergic reaction and stress response cadsed by vaccine inoculation can be avoided.展开更多
The application of indium requires high purity indium as material.5N high purity indium had been prepared by the method of acombination of chemically smelting and electrolysis. Smelting timewas 10 min, the abstraction...The application of indium requires high purity indium as material.5N high purity indium had been prepared by the method of acombination of chemically smelting and electrolysis. Smelting timewas 10 min, the abstraction rate of cadmium was 80/100-90/100 whenused solution of I_2-KI and glycerine to smelt indium. 4N metalindium was used as anode, high purity indium as cathode, In-2(SO_4)_3-H_2SO_4 system as electrolyte, and In content is 100 g/L, pH2-3 and current density 80-100 a/m^2.展开更多
It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic r...It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic recyclable adsorbent of BiFeO3/Carbon nanocomposites for purifying simulative industrial dye wastewater. It is found that the structure of the prepared BiFeO3/Carbon nanocomposite is related to the natural structure of the biscuit, annealing temperatures and immersing times, demonstrated by XRD, TEM, UV-Vis and adsorptive activities. Kinetics data shows that the adsorption rate of the adsorbent to the dye is rapid and fitted well with the pseudo-second-order model, that more than 80% of dyes can be removed in the beginning 30 min. The adsorption isotherm can be perfectly described by the Langmuir model as well. It can be seen from the adsorption data that the adsorption performance can reach over 90% at pH ? 2–12, which can imply its universal utilization. The prepared BiFeO_3/Carbon nanocomposites have also displayed excellent capacities(over 90% within 30 min) for adsorption of seven different dyes and their mixed one. According to the five times photocatalytic reproducible experiments, it is proved that BiFeO_3/Carbon nanocomposites show the excellent stability and reproduction for purifying simulative industrial dyes, even the sample have been placed for one year. These research results indicate that the adsorbent BiFeO_3/Carbon can be a suitable material used in treating industrial dye wastewater potentially.展开更多
The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process( CASP). Sludge loading ...The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process( CASP). Sludge loading rate(SLR) for Fhhh to COD of the wastewater was 1.09 d^-1 and to PTA in the wastewater was 0.29 d^-1. The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were .5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.展开更多
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
基金Supported by Program of Science and Technology of Hunan Province(2007FJ2006)Project the Program of Science and Tech-nology of Hunan Province(2007TP4030)Hunan Provincial Natural Science Foundation of China(08JJ3093)
文摘This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of China
文摘To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
文摘Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-conditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irradiance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the design weather data for the three different constructions is not kept constant.
文摘The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different dehumidifiers such as desiccant column and desiccant wheel were investigated. The ANSYS and TRASYS software were used to predict the results of dehumidifiers and the desiccant cooling systems, respectively. The desiccant bed contained approximately 15 kg of silica-gel, with 3 mm average diameter. Results indicated that the pressure drop and the adsorption rate of desiccant column are usually higher than those of the desiccant wheel. The feasible and practical adsorption rate of desiccant wheel was 0.102 kgw/h at air flow rate 1.0 kg/min, regenerated air temperature of 55?C and at a wheel speed of 2.5 rpm. The humidity ratio of conditioning space and cooling load of split-type air conditioner was decreased to 0.002 kgw/kgda (14%) and 0.71 kWth (19.26%), respectively. Consequently, the thermal comfort was improved from 0.5 PMV (10.12% PPD) to 0.3 PMV (7.04% PPD).
文摘An energy-saving control strategy based on predictive control for central air-conditioning systems is proposed in this paper. The cold load model is developed to describe the dynamic characteristics of temperature control systems, and then parameters in the cold load model and in the central air-conditioning system model are estimated. Generalized predictive control (GPC) is used to establish an optimization model to minimize the consumption of energy and the control error of temperature. The simulated annealing (SA) algorithm, combined with quadratic programming, is adopted to solve the optimal problem. Contrasted with the simulation of traditional PID control, the results prove the effectiveness of this proposed strategy.
文摘As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product de- signing.Lots of information in the process of this research is fuzzy and uncertain,but traditional QFD can not deal with it well. Fuzzy theory can solve the problem.So a fuzzy model for analyzing product competitive power is formulated in this paper to im- prove traditional QFD,after that it is applied to analyze air-conditioning competitive power.When air-conditioning competitive power is analyzed using this model,firstly the importance weight of the customer requirements o fair-conditioning is determined us- ing the Analytic Hierarchy Process (AHP) weighting process,then air-conditloning competitive power is evaluated using fuzzy comprehensive evaluation.It is proved that the model is feasible and has good applicability.
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219907)
文摘An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.
文摘The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.
基金Project(2011B061200043)supported by the Guangdong Provincial Department of Science and Technology,China
文摘Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.
文摘Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0903201)the Science and Technology Project of China Southern Power Grid(No.GDKJXM20172171).
文摘Solar energy powered organic Rankine cycle vapor compression cycle(ORC-VCC)is a good alternative to convert solar heat into a cooling effect.In this study,an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous,and an office building located in Guangzhou,China is selected as a case study.The results show that beam solar radiation and generation temperature have considerable effects on the system performance.There is an optimal generation temperature at which the system achieves optimum performance.Also,as a key indicator,the cooling power per square meter collector should be considered in the hybrid solar cooling system in design process.Compared to the vapor compression cooling system,the hybrid cooling system can save almost 68.23%of electricity consumption.
文摘The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicators among different standards requirements, and the requirements of each vehicle procurement contracts are also different. The design of air-conditioning become difficult above these. In this paper, the fresh air volume of different type railway vehicles is analyzed from health and equipment electricity consumption according to the railway vehicles air-conditioning system standard requirements in domestic and abroad. Some advises for designing air-conditioning system of railway vehicles through the fresh air volume calculation and comparison for domestic air-conditioning system of railway vehicles was provided.
基金Supported by Science and Technical Development Plan of Jilin City(2013210029)Fund for Supporting Key Subjects in Jilin Agricultural Science and Technology College(2013x023)~~
文摘[Objective] The aim of this study was to improve the purification and protective potency of HP-PRRS inactivated vaccine. [Method] HP-PRRS virus that had been multiplied inside Marc-145 cells was collected and concentrated 50 times and then inactivated. Complete virions were separated and collected by chromatography with Sepharose 4 Fast Flow. Oil adjuvant was added to prepare purified inactivated vaccine. [Result] Viral protein was separated from other proteins by purification and the viral protein contents ranged from 76.7% to 82.4%, and 96% of the expected serum proteins were removed. Protective potency of purified vaccine was above 4/5 and positive conversion rate of antibody was over 86%, both higher than that of unpurified vaccine. The differences were significant. [Conclusion] The experiment il-lustrated that the immune efficacy of vaccine can be enhanced through concentrat- ing and purifying, while the non-viral protein can be removed, so that allergic reaction and stress response cadsed by vaccine inoculation can be avoided.
基金This project is financially supported by Chinese Key Project of Science and Technology (No.96-119-04-01)
文摘The application of indium requires high purity indium as material.5N high purity indium had been prepared by the method of acombination of chemically smelting and electrolysis. Smelting timewas 10 min, the abstraction rate of cadmium was 80/100-90/100 whenused solution of I_2-KI and glycerine to smelt indium. 4N metalindium was used as anode, high purity indium as cathode, In-2(SO_4)_3-H_2SO_4 system as electrolyte, and In content is 100 g/L, pH2-3 and current density 80-100 a/m^2.
基金financial support from the NSFC project(21501052 and 91622119)the China Postdoctoral Science Foundation(2015M570304)+2 种基金Special Funding for Postdoctoral of Heilongjiang Province(LBH-TZ06019)the Science Foundation for Excellent Youth of Harbin City of China(2016RQQXJ099)UNPYSCT-2016173
文摘It is essential to prepare highly-efficiency reproducible adsorbent for purifying industrial dye wastewater. In this work, biscuit with a layered porous structure as a template is applied to prepare a photocatalytic recyclable adsorbent of BiFeO3/Carbon nanocomposites for purifying simulative industrial dye wastewater. It is found that the structure of the prepared BiFeO3/Carbon nanocomposite is related to the natural structure of the biscuit, annealing temperatures and immersing times, demonstrated by XRD, TEM, UV-Vis and adsorptive activities. Kinetics data shows that the adsorption rate of the adsorbent to the dye is rapid and fitted well with the pseudo-second-order model, that more than 80% of dyes can be removed in the beginning 30 min. The adsorption isotherm can be perfectly described by the Langmuir model as well. It can be seen from the adsorption data that the adsorption performance can reach over 90% at pH ? 2–12, which can imply its universal utilization. The prepared BiFeO_3/Carbon nanocomposites have also displayed excellent capacities(over 90% within 30 min) for adsorption of seven different dyes and their mixed one. According to the five times photocatalytic reproducible experiments, it is proved that BiFeO_3/Carbon nanocomposites show the excellent stability and reproduction for purifying simulative industrial dyes, even the sample have been placed for one year. These research results indicate that the adsorbent BiFeO_3/Carbon can be a suitable material used in treating industrial dye wastewater potentially.
基金Ph.D Fund of the National Education Ministry of China(20030284038) and the Hi-Tech Research and Development Program (863) of China(2001AA216191)
文摘The biodegradation and toxicity of the purified terephthalic acid(PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process( CASP). Sludge loading rate(SLR) for Fhhh to COD of the wastewater was 1.09 d^-1 and to PTA in the wastewater was 0.29 d^-1. The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were .5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.