期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Evaluation of Regular Multistory Buildings Using IBC2009 Code and ESEE Regulations by Pushover Analysis Method
1
作者 Mohamed Sobaih Ahmed Mousa 《Open Journal of Civil Engineering》 2016年第4期595-617,共23页
For structural design and assessment of reinforced concrete members, the nonlinear analysis has become an important tool. The purpose of the pushover analysis is to assess the structural performance by estimating the ... For structural design and assessment of reinforced concrete members, the nonlinear analysis has become an important tool. The purpose of the pushover analysis is to assess the structural performance by estimating the strength and deformation capacities using static, nonlinear analysis and comparing these capacities with the demands at the corresponding performance levels. This paper aims to compare the results given by IBC2009 code and ESEE regulations. In this paper, four RC frames having 5, 15, 20 and 30 storeys were designed for seismicity according to both the recently adopted seismic code in Abu Dhabi (IBC2009) and the ESEE regulations. A pushover analysis is carried out for these buildings using SAP2000 (Ver. 15) and the ultimate capacities of the buildings are established. The obtained pushover curves and plastic hinges distributions are used to compare between the IBC2009 code and ESEE regulations. The comparison showed that there was variation in the obtained results by the two codes and the buildings designed by IBC2009 code were more vulnerable. 展开更多
关键词 pushover analysis Seismic Evaluation ESEE Regulations IBC2009 Code Abu Dhabi
下载PDF
Seismic Evaluation of Reinforced Concrete Frames in the Harsh Environment Using Pushover Analysis
2
作者 Mohamed Sobaih Ahmed Al Ghazali 《Open Journal of Civil Engineering》 2016年第4期685-696,共12页
The main objective of this paper is to evaluate the seismic response of buildings of typical reinforced concrete frames when concrete starts to deteriorate gradually and to make a comparison between the base shear and... The main objective of this paper is to evaluate the seismic response of buildings of typical reinforced concrete frames when concrete starts to deteriorate gradually and to make a comparison between the base shear and the displacement at different stages of earthquake loading. Typical 5, 15, 20 and 30-storey reinforced concrete frames have been designed for seismicity according to the recently adopted seismic code in Abu Dhabi, ACI 318-08/IBC 2009 code. A pushover analysis has been performed to these four buildings by using SAP 2000. Twenty-four models have been created (6 models for each building) by decreasing the concrete strength gradually from 4000 psi (281 kg/cm<sup>2</sup>) to 1500 psi (105 kg/cm<sup>2</sup>). This is to simulate the effect of harsh environment on the strength of concrete in existing buildings. 展开更多
关键词 pushover analysis ACI 318-08/IBC 2009 Abu Dhabi Harsh Environment
下载PDF
Regularity classification and corresponding analysis method requirements of horizontally curved bridges with unequal pier heights
3
作者 Mohammad Jalal Maleki-amin Shahrokh Maalek 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期549-571,共23页
The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of sev... The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability. 展开更多
关键词 horizontally curved bridges unequal height piers pushover analysis regularity index seismic analysis and response
下载PDF
Estimation of drift limits for different seismic damage states of RC frame staging in elevated water tanks using Park and Ang damage index
4
作者 Suraj O.Lakhade Ratnesh Kumar O.R.Jaiswal 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期161-177,共17页
Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to cat... Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed. 展开更多
关键词 elevated water tank frame staging damage states drift limit 3D modelling incremental dynamic analysis pushover analysis
下载PDF
Study on the Distribution Law of Horizontal Seismic Forces between Slab-Column and Shear Wall
5
作者 GUO Nan GUO Yihong YANG Yingwei 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2012年第3期443-448,共6页
In slab column-shear wall structures,both the whole structure′s seismic behavior and failure mode are greatly influenced by the distribution of horizontal seismic forces between slab-column and shear wall.In this pap... In slab column-shear wall structures,both the whole structure′s seismic behavior and failure mode are greatly influenced by the distribution of horizontal seismic forces between slab-column and shear wall.In this paper,a pushover analysis of topical slab column-shear wall structure was carried out,the seismic shear force that the slab-column and shear wall should undertake was worked out,the influences of plastic internal force redistribution and structure stiffness characteristic value on horizontal seismic distribution were studied and the calculation formula was given.The analysis results showed that with the yield of the shear walls,the story shear force was undertaken by slab-columns correspondingly increased while with the decrease of characteristic value of stiffness of a structure,and the horizontal seismic force was undertaken by slab-columns correspondingly decreased.According to the code,the design of horizontal force distribution may be cause insecurity problems,so it is necessary to give the distribution law of horizontal seismic forces in slab-column shear wall structures as the supplement to the corresponding regulation of the Code. 展开更多
关键词 slab column-shear wall structure horizontal seismic force pushover analysis plastic internal force redistribution characteristic value of stiffness of structure
下载PDF
Seismic performance evaluation procedure of asymmetric plan structures
6
作者 李宁 翟长海 谢礼立 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期21-26,共6页
Plan asymmetry leads to lateral-rotational coupled effects on structural response characteristics.This investigation deals with a simplified method for performance estimation of structures with asymmetric plan.By taki... Plan asymmetry leads to lateral-rotational coupled effects on structural response characteristics.This investigation deals with a simplified method for performance estimation of structures with asymmetric plan.By taking the eccentric characteristics of structures into account,an equivalent triple-degree of freedom (ETDOF) system,which is constructed by eccentric mass,rigid links and springs,is proposed.The modal pushover analysis (MPA) method for asymmetric plan structures is proposed.The target displacement is determined by constant strength spectrum.The applicability of proposed method is discussed.A generic mass eccentric 4-story steel frame is analyzed by the proposed MPA procedure and nonlinear time history analysis (NTHA).The results show that the maximum deformation obtained from MPA has a good agreement with the NTHA results.The proposed MPA procedure is reliable and effective for evaluating the performance of asymmetric plan structures. 展开更多
关键词 rotation response modal pushover analysis nonlinear static analysis performance estimation plan asymmetric
下载PDF
Comparative Study on Diagonal Strut Model of Infill Wall
7
作者 Zhenling Chai Zixiong Guo +1 位作者 Xiaojuan Liu Yunfan Jiang 《Structural Durability & Health Monitoring》 EI 2018年第3期169-187,共19页
The equivalent diagonal strut models of infill wall mainly include the single strut model and multi-strut model.Firstly,several equivalent strut models and their characteristics are introduced in this paper.Then,model... The equivalent diagonal strut models of infill wall mainly include the single strut model and multi-strut model.Firstly,several equivalent strut models and their characteristics are introduced in this paper.Then,model analysis and pushover analysis are carried out on infilled frame models with the aid of the software SAP2000.Two typical single strut models and a typical three-strut model are used to simulate the panel of the frames respectively.It is indicated that the period reduction factor of the frame with a three-strut model is close to the value recommended by the current code.The infill wall has great influence on the overall stiffness,bearing capacity and weak position of the structure.The stiffness and the bearing capacity of the infilled frame increase with the increase of the number of the infill walls.The unfilled story is the weak position of the infilled frame,and when the unfilled story at the bottom of the infilled frame,the seismic response of the upper infill layer decreases with the increasing of the number of unfilled story. 展开更多
关键词 Infill wall equivalent strut model comparative study pushover analysis
下载PDF
Investigating the Retrofit of RC Frames Using TADAS Yielding Dampers
8
作者 Mehrzad TahamouliRoudsari KCheraghi RAghayari 《Structural Durability & Health Monitoring》 EI 2022年第4期343-359,共17页
TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures.These types of dampers are designed so that they would yield before the main components of the str... TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures.These types of dampers are designed so that they would yield before the main components of the structure during earthquake.This dissipates a large portion of the earthquake’s energy and reduces the energy dissipation demand in the main components of the structure.Considering its suitable performance,this damper has been the subject of numerous studies.However,there are still ambiguities regarding the effect of the number of these dampers on the retrofitting of reinforced concrete(RC)frames and their design procedure.In this study,a singlestory,single-bay RC frame with the scale of 1:3,equipped with the TADAS damper,was subjected to hysteresis loading until the drift of 4%.Then,for further assessment,48 calibrated numerical models were constructed in ABAQUS and the effects of the number of TADAS dampers and column axial force upon the stiffness,strength,and ductility of the frame were accurately investigated.Also,a number of formulations were presented to calculate how the stiffness and lateral strength of the retrofitted frame are affected by an increase in the number of the TADAS plates.The results showed that if the shear capacity of the retrofitted frame is three times that of the initial frame,the structure would have the best response.In addition,if the axial force in the columns exceeds 0.2 Pcr the energy dissipation and ductility factor of the frame drastically decrease. 展开更多
关键词 pushover analysis reinforced concrete frame REHABILITATION TADAS yielding damper
下载PDF
Slotted Hole Effect on Damage Mechanism of Gymnasium Building with RC Frame and Steel Roof
9
作者 Atsushi Suzuki Tomomi Fujita Yoshihiro Kimura 《Open Journal of Civil Engineering》 2020年第2期162-174,共13页
On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major fai... On the 2011 off the Pacific Coast of Tohoku Earthquake, gymnasium buildings exhibited the unexpected structural damages, which prevented a use as evacuation shelters in during- and post-disaster periods. The major failure occurr<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ing</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> on the connection between the RC column top and steel roof as well as the cracks in the RC column base w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> observed during the emergent inspection. According to the earlier studies, it was implied that the presence of the slotted hole possibly deteriorates the seismic capacity;however, the length of slotted hole was fixed at a certain value. Facing this concern, this research attempts to clarify the influence of the slotted hole length through a comprehensive parametric study by pushover and seismic response analyses. In conclusion, it has been discovered that the slotted hole deteriorates the seismic capacity for the connection failure up to almost 50% of that without slotted hole. Moreover, the discrepancy of characteristics obtained by the static and dynamic analyses is originated by means of the presence of slotted hole. This slotted hole effect should be noted by structural engineers and researchers to provide the adequate seismic diagnosis and strengthening.</span></span></span> 展开更多
关键词 RC Frame with Steel Roof Structure The 2011 off the Pacific Coast of Tohoku Earthquake Damage Mechanism pushover analysis Seismic Response analysis
下载PDF
Investigation of Effects of Capacity Spectrum Method on Performance Evaluation of Multi-Story Buildings According to the IRAQI Seismic Code Requirements
10
作者 Al-Nuaimi Amer Mohamed Sobaih Akl Adel 《Open Journal of Civil Engineering》 2016年第3期420-441,共22页
The aim of this study is to assess the performance objectives defined in the Iraqi Seismic Code (ISC) in order to make a realistic evaluation related to Performance-Based Seismic Design (PBSD) of multi-story reinforce... The aim of this study is to assess the performance objectives defined in the Iraqi Seismic Code (ISC) in order to make a realistic evaluation related to Performance-Based Seismic Design (PBSD) of multi-story reinforced concrete buildings and also to compare and evaluate structural response demands obtained from nonlinear static analysis procedures according to two versions of the capacity spectrum method (CSM) which are recommended in ATC 40 and ATC 55. Two groups of three-dimensional RC buildings with different heights, designed according to Iraqi Building Code Requirements for Reinforced Concrete (IBC), are investigated. Pushover analyses are carried out to determine the nonlinear behavior of the buildings under three different seismic hazard levels, for two Iraqi seismic zones, of earthquake loads. In order to determine performance levels of the buildings, maximum inter-story drift demands and plasticizing sequence are determined and compared with the related limits using the CSM recommended in ATC 40 and ATC 55. From the results of this research, it can be concluded that RC buildings designed according to the Iraqi codes sufficiently provide the performance objectives stipulated in the ISC. Comparing structural response quantities obtained from the two versions of CSM, effects on performance evaluations of the buildings are investigated comparatively, as well. 展开更多
关键词 pushover analysis Capacity Spectrum Method Seismic Capacity Iraq PBSD RC Buildings
下载PDF
Performance Based Seismic Design of Reinforced Concrete Building
11
作者 Dilip J. Chaudhari Gopal O. Dhoot 《Open Journal of Civil Engineering》 2016年第2期188-194,共7页
In past two decades earthquake disasters in the world have shown that significant damage occurred even when the buildings were designed as per the conventional earthquake-resistant design philosophy (force-based appro... In past two decades earthquake disasters in the world have shown that significant damage occurred even when the buildings were designed as per the conventional earthquake-resistant design philosophy (force-based approach) exposing the inability of the codes to ensure minimum performance of the structures under design earthquake. The performance based seismic design (PBSD), evaluates how the buildings are likely to perform under a design earthquake. As compared to force-based approach, PBSD provides a methodology for assessing the seismic performance of a building, ensuring life safety and minimum economic losses. The non-linear static procedures also known as pushover analysis are used to analyze the performance of structure under lateral loads. Pushover analysis gives pattern of the plastic hinge formations in structural members along with other structural parameters which directly show the performance of member after an earthquake event. In this paper, a four-storey RC building is modelled and designed as per IS 456:2000 and analyzed for life safety performance level in SAP2000 v17. Analysis is carried out as per ATC 40 to find out storey drift, pushover curve, capacity spectrum curve, performance point and plastic hinges as per FEMA 273 in SAP2000 v17. From the analysis, it is checked that the performance level of the building is as per the assumption. 展开更多
关键词 PBSD Performance Level pushover analysis Performance Point Plastic Hinge
下载PDF
Seismic Response Improvement of Existing Prototype School Buildings Using Water Tanks, Port Said City, Egypt
12
作者 Batool Wahba Mohamed Sobaih Adel Akl 《Open Journal of Civil Engineering》 2016年第2期117-130,共14页
There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load o... There is a global trend for seismic response improvement of new buildings to reduce cost and future damage. It is also important to improve existing structures that are designed without consideration of seismic load or using old provisions that cannot meet the new one. The objective of this paper is to draw attention to evaluate existing reinforced concrete school buildings, then to present a proposed methodology to improve the behaviour of such schools with low cost especially in a developing country. The proposed method uses overhead water tanks as a tuned mass damper. A pushover analysis has been performed to evaluate the existing schools and perform a feasibility study to select the best solution to achieve seismic response improvement of the existing structure. Of course, the proposed methodology can be applied easily to other existing structures. 展开更多
关键词 Existing Structures Tuned Mass damper (TMD) Seismic improvement pushover analysis Water Tank
下载PDF
Assessment of seismic retrofitting interventions in reinforced concrete structures
13
作者 Naveen Avulapalle Rajaram Chenna Jayaprakash Vemuri 《Geohazard Mechanics》 2023年第2期194-202,共9页
Destruction of reinforced concrete(RC)structures,particularly non-ductile RC structures,in recent earthquakes demonstrate their vulnerability under lateral forces generated in an earthquake.Despite the extensive liter... Destruction of reinforced concrete(RC)structures,particularly non-ductile RC structures,in recent earthquakes demonstrate their vulnerability under lateral forces generated in an earthquake.Despite the extensive literature on the subject and the wide variety of strengthening techniques available,there is no consensus on the efficiency of these techniques in improving the seismic performance of RC structures.In this study,a five-storeyed RCframed building is considered to evaluate its seismic performance through static non-linear pushover analysis.To examine the effect of various cases encountered in practice,the pushover analysis is carried out on the RC frame for various cases,i.e.a bare RC frame,an RC frame with masonry infills but with an open ground storey,and RC frames with shear walls with a variety of thicknesses and steel reinforcement ratios.Further,to investigate the effect of retrofitting,the RC frame is strengthened using local jacketing and bracings.From the results,it is observed that the initial stiffness and base shear of masonry infilled RC frame with an open ground storey exhibit an increase of 2.6%,and 19%,respectively,as compared to the bare frame.The use of shear walls increases the initial stiffness and base shears,and they increase by 6–14%and 8–20%,respectively,with an increase in the reinforcement ratio in the shear wall.Retrofitting with the use of both diagonal bracings causes the base shear to increase by a factor of 7.7 as compared to that of the open ground storey.Finally,the probability of damage to the RC frame in all cases was compared using seismic fragility curves. 展开更多
关键词 Reinforced concrete pushover analysis Base shear Retrofitting DAMAGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部