期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
1
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated Photovoltaics (VIpv) VIpv-Powered Electric Vehicles Driving Distance pv modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Comparison between the Energy Required for Production of PV Module and the Output Energy Througout the Product Life Time
2
作者 Lea Beatriz Dai Pra Joao Batista Dias Amanda Goncalves Kieling 《Journal of Energy and Power Engineering》 2015年第6期592-597,共6页
Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV ... Electrical energy consumption is growing and is necessary to improve the technologies related to energy production. We have carried out a pilot study about environmental impacts during the manufacturing process of PV (photovoltaic) modules and compared between the energy requirement for the production of PV cells and modules and generation throughout the life time of the finished good that is PV module. It was taken into account the generation of environmental aspects and impacts in the manufacture of monocrystalline silicon PV modules (consisting of three components: silicon cell, fiat tempered glass and aluminum frame), and an analysis of a grid-connected PV system using an energetic alternative in residences was considered. Results show that, this kind of renewable energy is really clean and can be considered as a way to change the energy technology. 展开更多
关键词 Manufacturing of pv modules generation of environmental impacts grid-connected pv system.
下载PDF
Research on the potential-induced degradation (PID) of PV modules running in two typical climate regions 被引量:2
3
作者 Gang Sun Xiaohe Tu Rui Wang 《Clean Energy》 EI 2019年第3期222-226,共5页
In order to accurately select photovoltaic modules under different climatic conditions,three kinds of polycrystalline silicon photovoltaic modules were prepared for this study using different properties of packaging m... In order to accurately select photovoltaic modules under different climatic conditions,three kinds of polycrystalline silicon photovoltaic modules were prepared for this study using different properties of packaging materials and two typical climatic zones of China were selected for installation and operation of these photovoltaic(PV)modules.The photoelectric parameters(maximum power,open-circuit voltage,short-circuit current,etc.)and electroluminescence images of these modules were analysed before and after their operation for 6 months.The study found that the performance of PV modules in different climatic regions shows different decay tendency and degradation mechanism.There was a significant difference in the degradation of the three different types of PV modules in the sub-humid-hot region(Suzhou,Jiangsu);two kinds of photovoltaic modules using relatively poorly performing package materials showed significant potential-induced degradation effects.However,the degradation trend of the three different types of PV modules in the warm-temperate region(Kenli,Shandong)was consistent and no significant potential-induced degradation effect was observed. 展开更多
关键词 pv modules typical climate zones PID power degradation
原文传递
A novel porous channel to optimize the cooling performance of PV modules 被引量:1
4
作者 Yingbo Zhang Chao Shen +3 位作者 Chunxiao Zhang Jihong Pu Qianru Yang Cheng Sun 《Energy and Built Environment》 2022年第2期210-225,共16页
This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous coo... This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous cooling channel based on field synergy theory had a higher overall heat transfer coefficient,which enhanced the total efficiency of the PV/T system.The numerical model was validated with experimental data.The results showed that holes distributed non-uniformly near the outlet of the cooling water led to a better cooling effect,and a hole diameter of 0.005 m led to an optimal performance.The total efficiency of the PV module with the new cooling channel was 4.17%higher than the conventional one at a solar irradiance of 1000 W/m^(2)and an inlet mass flow rate of 0.006 kg/s.In addition,as the solar irradiance increased from 300 to 1200 W/m^(2),the total efficiency of the new PV/T system dropped by 5.07%,which included reductions in both the electrical and thermal efficiency.The total efficiency was improved by 18.04%as the inlet mass flow rate of cooling water increased from 0.002 to 0.02 kg/s. 展开更多
关键词 pv modules Heat regulation Field synergy theory pv cell temperature
原文传递
PV Array Reconfiguration Based on the Shaded Cells'Number for PV Modules
5
作者 Jun Qi Xun Huang +1 位作者 Beijia Ye Dan Zhou 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期733-742,共10页
Reconfiguration can increase the output power for a PV array under partial shadows.However,traditional reconfiguration methods consider the PV module as either totally shaded or totally unshaded,and module-based simul... Reconfiguration can increase the output power for a PV array under partial shadows.However,traditional reconfiguration methods consider the PV module as either totally shaded or totally unshaded,and module-based simulation is employed to evaluate the reconfiguration effect.Actually,there is an unneglectable error when treating a partially shaded PV module as totally shaded,through using a more accurate cellbased simulation.Based on the analysis of the determinant factors on MPPs’power of a PV array,a new reconfiguration method is proposed based on the exact partial shadow shape projected on the PV array.This method restructures the electrical connection among PV modules of a PV array according to the shaded cells’number(SCN)of every PV module.Extensive cell-based simulations are carried out on a PV array to verify the effectiveness of the proposed SCN-based reconfiguration method.Comprehensive comparisons among various reconfiguration methods and shadow distributions clearly show its suitability to different irregular shadows and its superiority in PV output power enhancement. 展开更多
关键词 Maximum power point(MPP) partial shadow pv array pv module RECONFIGURATION
原文传递
Maximizing Solar Potential Using the Differential Grey Wolf Algorithm for PV System Optimization
6
作者 Ezhilmathi Nagarathinam Buvana Devaraju +4 位作者 Karthiyayini Jayamoorthy Padmavathi Radhakrishnan Santhana Lakshmi ChandraMohan Vijayakumar Perumal Karthikeyan Balakrishnan 《Energy Engineering》 EI 2024年第8期2129-2142,共14页
Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under... Maximum Power Point Tracking(MPPT)is crucial for maximizing the energy output of photovoltaic(PV)systems by continuously adjusting the operating point of the panels to track the point of maximum power production under changing environmental conditions.This work proposes the design of an MPPT system for solar PV installations using the Differential Grey Wolf Optimizer(DGWO).It dynamically adjusts the parameters of the MPPT controller,specifically the duty cycle of the SEPIC converter,to efficiently track the Maximum Power Point(MPP).The proposed system aims to enhance the energy harvesting capability of solar PV systems by optimizing their performance under varying solar irradiance,temperature and shading conditions.Simulation results demonstrate the effectiveness of the DGWO-based MPPT system in maximizing the power output of solar PV installations compared to conventional MPPT methods.This research contributes to the development of advanced MPPT techniques for improving the efficiency and reliability of solar energy systems. 展开更多
关键词 DGWO SEPIC converter MPPT pv module
下载PDF
Analysis of the Effect of Temperature and Relative Humidity on the Reliability of a Photovoltaic Module
7
作者 Abdoulaye Kabré Dominique Bonkoungou Zacharie Koalaga 《Advances in Materials Physics and Chemistry》 CAS 2024年第8期165-177,共13页
Photovoltaic energy occupies a significant place in the renewable energy market, with photovoltaic (PV) modules playing a vital role in converting solar energy into electricity. However, their effectiveness is likely ... Photovoltaic energy occupies a significant place in the renewable energy market, with photovoltaic (PV) modules playing a vital role in converting solar energy into electricity. However, their effectiveness is likely to be affected by variations in environmental conditions, including temperature and relative humidity. The study examines the impact of these major climatic factors on the reliability of PV modules, aiming to provide crucial information for optimizing and managing these systems under varying conditions. Inspired by Weibull’s law to model the lifespan of components, we proposed a mathematical model integrating a correction factor linked to temperature and relative humidity. Using this approach, simulations in Matlab Simulink reveal that increasing temperature and relative humidity have an adverse impact on the reliability and lifespan of PV modules, with a more pronounced impact on temperature. The results highlight the importance of considering these environmental parameters in the management and optimization of photovoltaic systems to ensure their long-term efficiency. 展开更多
关键词 Solar Energy pv module LIFESPAN RELIABILITY EFFICIENCY
下载PDF
PV Capacity Evaluation Using ASTM E2848: Techniques for Accuracy and Reliability in Bifacial Systems
8
作者 Gautam Swami Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第9期201-216,共16页
A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV indus... A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance. 展开更多
关键词 Photovoltaic System Capacity ASTM E2848 Bifacial pv modules pv Capacity Testing pvSyst Simulation Solar Energy Performance Regression Modeling
下载PDF
Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules
9
作者 Yongcan Zhu JiawenWang +3 位作者 Ye Zhang Long Zhao Botao Jiang Xinbo Huang 《Energy Engineering》 EI 2024年第4期895-911,共17页
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ... The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply. 展开更多
关键词 Photovoltaic(pv)module residual snow and ice snow detection feature extraction image processing
下载PDF
Resiliency oriented control of a smart microgrid with photovoltaic modules 被引量:2
10
作者 Sambeet Mishra Kristjan Peterson +3 位作者 Tauno Hilimon Jelena Shuvalova Fushuan Wen Ivo Palu 《Global Energy Interconnection》 EI CAS CSCD 2021年第5期441-452,共12页
The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detail... The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detailed photovoltaic(PV)module and the application of new control techniques for efficient energy extraction.The PV module employs a single-stage conversion method to integrate it with the utility grid.For extraction the maximum power from PV and integrate it to power grid,a three-phase voltage source converter is used.For obtaining the maximum power at a particular irradiance a maximum power point tracking(MPPT)scheme is used.The fuzzy logic control and adaptive network-based fuzzy inference system are proposed for direct current(DC)link voltage control.The proposed model and control scheme are validated through a comparison with the standard power-voltage and current-voltage charts for a PV module.Simulation results demonstrate that the system stability can be maintained with the power grid and in the island mode,in contrast with the MPPT. 展开更多
关键词 pv module MPPT Adaptive network-based fuzzy inference system(ANFIS) Converter control Grid integration
下载PDF
Modeling of the Photovoltaic Module Operating Temperature for Various Weather Conditions in the Tropical Region
11
作者 Mame Cheikh Diouf Mactar Faye +2 位作者 Ababacar Thiam Alphousseyni Ndiaye Vincent Sambou 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1275-1284,共10页
The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temper... The operating temperature is a critical factor affecting the performances of photovoltaic(PV)modules.In this work,relevant models are proposed for the prediction of this operating temperature using data(ambient temperature and solar irradiance)based on real measurements conducted in the tropical region.For each weather condition(categorized according to irradiance and temperature levels),the temperatures of the PV modules obtained using the proposed approach is compared with the corresponding experimentally measured value.The results show that the proposed models have a smaller Root Mean Squared Error than other models developed in the literature for all weather conditions,which confirms the reliability of the proposed framework. 展开更多
关键词 PHOTOVOLTAIC operating temperature pv module weather condition
下载PDF
Effect of Dust and Shadow on Performance of Solar Photovoltaic Modules: Experimental Analysis
12
作者 Ramkiran Bhallamudi Sudhakar Kumarasamy Chinnayan Karuppaiyah Sundarabalan 《Energy Engineering》 EI 2021年第6期1827-1838,共12页
This study presents an experimental performance of a solar photovoltaic module under clean,dust,and shadow conditions.It is found that there is a significant decrease in electrical power produced(40%in the case of dus... This study presents an experimental performance of a solar photovoltaic module under clean,dust,and shadow conditions.It is found that there is a significant decrease in electrical power produced(40%in the case of dust panels and 80%in the case of shadow panels)and a decrease in efficiency of around 6%in the case with dust and 9%in the case with the shadow,as compared to the clean panel.From the results,it is clear that there is a substantial effect of a partial shadow than dust on the performance of the solar panel.This is due to the more obstruction of the sunlight by the shadowed area compared to the dust.The dust being finer particles for the given local experimental condition did not influence the panel than the shadow.The main outcome of this study is that the shadowing effect may cause more harm to the PV module than dust for the given experimental conditions.However,Further long-term studies on the effect of dust and shadow are needed to understand the effect on performance degradation and module life. 展开更多
关键词 SHADOW DUST SOILING pv module pv performance
下载PDF
Voltage-Based Hot-Spot Detection Method for Defective Cell in Photovoltaic Module Using Projector
13
作者 YadongWang Kazutaka Itako +2 位作者 Tsugutomo Kudoh Keishin Koh Qiang Ge 《Journal of Energy and Power Engineering》 2016年第8期489-496,共8页
This paper proposes a voltage-based hot-spot detection method for defective cells in PV module using projector. The presence of internal crystal defects is one of the main causes of hot-spot phenomenon in PV modules. ... This paper proposes a voltage-based hot-spot detection method for defective cells in PV module using projector. The presence of internal crystal defects is one of the main causes of hot-spot phenomenon in PV modules. Authors previously investigated the physical characteristics of hot-spot phenomenon referring to internal crystal defect. Based on it, a hot-spot detection method named as current-based SRC (self reverse current) detection method is developed. However, it becomes extraordinarily complicated to determine the defective cells under low illumination. In order to avoid this disadvantage, authors improve the SRC detection method by applying voltage. From the feasibility experiment results, it is confirmed that by calculating cell HSI (hotspots index) with voltage, the PV modules with defective cells can be prospectively excluded even under low illumination. 展开更多
关键词 HOT-SPOT pv module crystal defect detection method hot spot index.
下载PDF
Numerical Analysis of an Industrial Polycrystalline Silicon Photovoltaic Module Based on the Single-Diode Model Using Lambert W Function
14
作者 Mihai Razvan Mitroi Valerica Ninulescu +1 位作者 Laurentiu Fara Dan Craciunescu 《Journal of Power and Energy Engineering》 2019年第7期29-38,共10页
It is adopted the single-diode solar cell model and extended for a PV module. The current vs. voltage (I-V) characteristic based on the Lambert W-function was used. The estimation parameters for the simulation approac... It is adopted the single-diode solar cell model and extended for a PV module. The current vs. voltage (I-V) characteristic based on the Lambert W-function was used. The estimation parameters for the simulation approach of the photovoltaic (PV) module make use of Levenberg-Marquardt method. It was considered an industrial polycrystalline silicon photovoltaic (PV) module and the simulated results were compared with the experimental ones extracted from a specific datasheet. The I-V characteristic for the analysed PV module and its maximum output power are investigated for different operating conditions of incident solar radiation flux and temperature, as well as parameters related to the solar cells material and technology (series resistance, shunt resistance and gamma factor). The analysis gives indications and limitations for design and optimization of the performance for industrial PV modules. This study can be implemented in any type of PV module. 展开更多
关键词 Single-Diode Model Electrical Modeling I-V Characteristic Numerical Analysis Industrial pv module Performance
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
15
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 Solar Photovoltaic (pv) modules Thermal Efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) Solar Panel Temperature Profile
下载PDF
Short-Term Prediction of Photovoltaic Power Based on Fusion Device Feature-Transfer
16
作者 Zhongyao Du Xiaoying Chen +3 位作者 Hao Wang Xuheng Wang Yu Deng Liying Sun 《Energy Engineering》 EI 2022年第4期1419-1438,共20页
To attain the goal of carbon peaking and carbon neutralization,the inevitable choice is the open sharing of power data and connection to the grid of high-permeability renewable energy.However,this approach is hindered... To attain the goal of carbon peaking and carbon neutralization,the inevitable choice is the open sharing of power data and connection to the grid of high-permeability renewable energy.However,this approach is hindered by the lack of training data for predicting new grid-connected PV power stations.To overcome this problem,this work uses open and shared power data as input for a short-term PV-power-prediction model based on feature transfer learning to facilitate the generalization of the PV-power-prediction model to multiple PV-power stations.The proposed model integrates a structure model,heat-dissipation conditions,and the loss coefficients of PV modules.Clear-Sky entropy,characterizes seasonal and weather data features,describes the main meteorological characteristics at the PV power station.Taking gate recurrent unit neural networks as the framework,the open and shared PV-power data as the source-domain training label,and a small quantity of power data from a new grid-connected PV power station as the target-domain training label,the neural network hidden layer is shared between the target domain and the source domain.The fully connected layer is established in the target domain,and the regularization constraint is introduced to fine-tune and suppress the overfitting in feature transfer.The prediction of PV power is completed by using the actual power data of PV power stations.The average measures of the normalized root mean square error(NRMSE),the normalized mean absolute percentage error(NMAPE),and the normalized maximum absolute percentage error(NLAE)for the model decrease by 15%,12%,and 35%,respectively,which reflects a much greater adaptability than is possible with other methods.These results show that the proposed method is highly generalizable to different types of PV devices and operating environments that offer insufficient training data. 展开更多
关键词 Solar power generation transfer learning pv module UMAP GRU OVERFITTING
下载PDF
Numerical modeling of all-day albedo variation for bifacial PV systems on rooftops and annual yield prediction in Beijing
17
作者 Xiaoxiao Su Chenglong Luo +4 位作者 Xinzhu Chen Jie Ji Yanshun Yu Yuandan Wu Wu Zou 《Building Simulation》 SCIE EI CSCD 2024年第6期955-964,共10页
Bifacial PV modules capture solar radiation from both sides,enhancing power generation by utilizing reflected sunlight.However,there are difficulties in obtaining ground albedo data due to its dynamic variations.To ad... Bifacial PV modules capture solar radiation from both sides,enhancing power generation by utilizing reflected sunlight.However,there are difficulties in obtaining ground albedo data due to its dynamic variations.To address this issue,this study established an experimental testing system on a rooftop and developed a model to analyze dynamic albedo variations,utilizing specific data from the environment.The results showed that the all-day dynamic variations in ground albedo ranged from 0.15 to 0.22 with an average of 0.16.Furthermore,this study evaluates the annual performance of a bifacial PV system in Beijing by considering the experimental conditions,utilizing bifacial modules with a front-side efficiency of 21.23%and a bifaciality factor of 0.8,and analyzing the dynamic all-day albedo data obtained from the numerical module.The results indicate that the annual radiation on the rear side of bifacial PV modules is 278.90 kWh/m^(2),which accounts for only 15.50%of the front-side radiation.However,when using the commonly default albedo value of 0.2,the rear-side radiation is 333.01 kWh/m^(2),resulting in an overestimation of 19.40%.Under dynamic albedo conditions,the bifacial system is predicted to generate an annual power output of 412.55 kWh/m^(2),representing a significant increase of approximately 12.37%compared to an idealized monofacial PV system with equivalent front-side efficiency.Over a 25-year lifespan,the bifacial PV system is estimated to reduce carbon emissions by 8393.91 kgCO_(2)/m^(2),providing an additional reduction of 924.31 kgCO_(2)/m^(2)compared to the idealized monofacial PV system.These findings offer valuable insights to promote the application of bifacial PV modules. 展开更多
关键词 bifacial pv module ground albedo simulation carbon emission reduction
原文传递
Feasibility Study for Power Generation during Peak Hours with a Hybrid System in a Recycled Paper Mill
18
作者 Adriano Beluco Clodomiro P.Colvara +1 位作者 Luis E.Teixeira Alexandre Beluco 《Computational Water, Energy, and Environmental Engineering》 2013年第2期43-53,共11页
The differential pricing for peak hours encourages industrial consumers to look for independent power supplies for the period from 19 to 22 hours. This paper presents a study to identify the optimal solution for a rec... The differential pricing for peak hours encourages industrial consumers to look for independent power supplies for the period from 19 to 22 hours. This paper presents a study to identify the optimal solution for a recycled paper mill that also intends to work in that period. The factory is located in Rio Grande do Sul, in southern Brazil, and considers the use of a diesel gen set, a micro hydro power plant and possibly PV modules. Two micro hydro power plants were considered in the study, an old plant to be renewed and another to be fully implemented. The software Homer was used as a tool to determine the most feasible combination of components considered in the study. The sale of surplus power to the energy system appears as a key to viability of alternatives that are not based solely on diesel generators. The optimal solution consists of a combination of diesel generators and micro hydro power plant, in one case, and only on hydroelectric power plant in another, with a significant penetration of PV modules if its cost is reduced to 12% of the current price, selling an amount of energy equal to that which is bought. The annual water availability in one of the sites requires diesel supplement, while the other, more abundant, this supplement is not necessary. 展开更多
关键词 Hybrid Energy Systems Micro Hydro Power pv modules Energetic Complementarity Feasibility Study Computational Simulation Software Homer
下载PDF
Power optimization of photovoltaic modules under varying environmental conditions based on current equalization collaborating with constant voltage control
19
作者 DaiBin Tang Fei Lu Siaw Tzer Hwai Gilbert Thio 《Clean Energy》 EI CSCD 2024年第4期169-182,共14页
The performance of photovoltaic(PV)modules is affected by environmental factors such as irradiance and temperature,which can lead to a decrease in output performance or even damage.This study proposes an improved form... The performance of photovoltaic(PV)modules is affected by environmental factors such as irradiance and temperature,which can lead to a decrease in output performance or even damage.This study proposes an improved formula for calculating the real maximum power of PV modules by analysing the influence of irradiance and temperature.A simulation model is developed using PLECS software to simulate the global maximum power of PV modules under different environmental conditions and the results are compared with the calculated real maximum power.A power optimization scheme for PV modules is then proposed based on current equalization and constant voltage control.This scheme employs a single-switch multi-winding forward-flyback converter to equalize the mismatched currents between cell strings,thereby enhancing the output performance.Traditional proportional-integral controllers are utilized to achieve constant voltage control and obtain the real maximum power of PV modules.Simulation models are built in the PLECS simulation platform to evaluate the performance of a global maximum power point tracking scheme based on the traditional perturb-and-observe(TPO)algorithm with current equalization,a segment perturb-and-observe algorithm without current equalization,and the proposed power optimization scheme.The simulation results demonstrate that the proposed constant voltage control has greater efficiency than the TPO algorithm.The proposed scheme achieves a significant improvement in efficiency,with a 27.87%increase compared with the segment perturb-and-observe algorithm without current equalization. 展开更多
关键词 current equalization constant voltage control forward-flyback converter pv modules perturb-and-observe(P&O)algorithm
原文传递
Photovoltaic Models Parameters Estimation Based on Weighted Mean of Vectors 被引量:1
20
作者 Mohamed Elnagi Salah Kamel +1 位作者 Abdelhady Ramadan Mohamed F.Elnaggar 《Computers, Materials & Continua》 SCIE EI 2023年第3期5229-5250,共22页
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ... Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms. 展开更多
关键词 Photovoltaic(pv)modules weIghted meaN oF vectOrs algorithm(INFO) renewable energy static pv models dynamic pv models solar energy
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部