In this study,S-doped g-C_(3)N_(4)nanoparticles were successfully prepared by one-step solid-state microwave synthesis.The detailed characterizations through XRD,FT-IR,SEM and XPS were studied.In addition,the electroc...In this study,S-doped g-C_(3)N_(4)nanoparticles were successfully prepared by one-step solid-state microwave synthesis.The detailed characterizations through XRD,FT-IR,SEM and XPS were studied.In addition,the electrochemical properties as supercapacitor of the sample were tested by cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)techniques.The results showed a high specific capacitance of 691 F/g at current density of 4 A/g in 2 M KOH+0.15 M K3[Fe(CN)_(6)]electrolyte.This study shows that the microwave synthesis is a promising way to design carbon-based electrodes for supercapacitor.展开更多
基金the Natural Science Foundation of Fujian Province(No.2020J01803)Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry(FJKL_FBCM202004)the Fujian Provincial Key Laboratory of Ecotoxicological Effects and Control of New pollutants(PY19001)。
文摘In this study,S-doped g-C_(3)N_(4)nanoparticles were successfully prepared by one-step solid-state microwave synthesis.The detailed characterizations through XRD,FT-IR,SEM and XPS were studied.In addition,the electrochemical properties as supercapacitor of the sample were tested by cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)techniques.The results showed a high specific capacitance of 691 F/g at current density of 4 A/g in 2 M KOH+0.15 M K3[Fe(CN)_(6)]electrolyte.This study shows that the microwave synthesis is a promising way to design carbon-based electrodes for supercapacitor.