期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimizing Designed Variable Speed Control Moment Gyroscopes with Variable Skew Angle
1
作者 Feng Liu Feng Gao Xiaojun Ding 《Journal of Applied Mathematics and Physics》 2023年第11期3315-3344,共30页
Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task o... Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power. 展开更多
关键词 VSCMG pyramid configuration with Variable Skew Angle New Steering Law Designed Optimization Parameters
下载PDF
An improved constrained steering law for SGCMGs with DPC 被引量:1
2
作者 Lei Jin Shijie Xu Department of Guidance, Navigation and Control,School of Astronautics, Beihang University, 100191 Beijing, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期713-720,共8页
An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration ... An improved constrained (IC) steering law for single gimbal control moment gyros (SGCMGs) with deformed pyramid configuration (DPC) is proposed, First of all, the original system with five pyramid configuration (FPC) whose two adjacent gyros are in failure state is reconfigured as a degraded system with DPC. Then, the singular angular momentum hypersurfaces of the original and the degraded systems are plotted via the singular angular momentum equa- tion of SGCMGs. Based on singular surfaces, the differences between FPC and DPC in singularity and momentum envelope are obtained directly, which provide an important reference for steering law design of DPC. Finally, an IC steering law is designed and applied to DPC. The simulation results demonstrate that the IC steering law has advantages in simplicity of calculation, avoidance of singularity and exactness of output torque, which endow the degraded system with fine controllability in a restricted workspace. 展开更多
关键词 Single gimbal control moment gyros (SGCMGs) - Deformed pyramid configuration (DPC) Failure Singularity - Steering law
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部