The oblique penetration performance of lightweight hybrid-cored sand- wich plates are investigated numerically. To compose the hybrid-core, ceramic prisms are inserted into pyramidal metal lattice trusses and fixed us...The oblique penetration performance of lightweight hybrid-cored sand- wich plates are investigated numerically. To compose the hybrid-core, ceramic prisms are inserted into pyramidal metal lattice trusses and fixed using epoxy resin. Three-dimensional finite element simulations are carried out for the hybrid- cored sandwich impacted at 15°, 30°, 45°, and 60°obliquity by a hemispherical projectile. The ballistic limit, the energy absorbed by the constituting elements, and the critical oblique angle are quantified. The physical mechanisms underly- ing the failure and the influence of fundamental system parameters are explored. The angle of obliquity is found to have significant influence on the ballistic trajec- tory and erosion of the projectile, thus it is important for the impact response and penetration resistance of the sandwich. For oblique angles equal to or larger than 45°, the projectile moves mainly horizontally and can not effectively penetrate across the sandwich.展开更多
Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core ...Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.展开更多
基金supported by the National Basic Research Program of China(2011CB610305)
文摘The oblique penetration performance of lightweight hybrid-cored sand- wich plates are investigated numerically. To compose the hybrid-core, ceramic prisms are inserted into pyramidal metal lattice trusses and fixed using epoxy resin. Three-dimensional finite element simulations are carried out for the hybrid- cored sandwich impacted at 15°, 30°, 45°, and 60°obliquity by a hemispherical projectile. The ballistic limit, the energy absorbed by the constituting elements, and the critical oblique angle are quantified. The physical mechanisms underly- ing the failure and the influence of fundamental system parameters are explored. The angle of obliquity is found to have significant influence on the ballistic trajec- tory and erosion of the projectile, thus it is important for the impact response and penetration resistance of the sandwich. For oblique angles equal to or larger than 45°, the projectile moves mainly horizontally and can not effectively penetrate across the sandwich.
文摘Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle.