期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue 被引量:11
1
作者 Desheng Zhou Mei Li +4 位作者 Hua Hu Yao Chen Yang Yang Jie Zhong Lijuan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第34期3216-3224,共9页
Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3... Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre- scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat- ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. 展开更多
关键词 neural regeneration traditional Chinese medicine Huoxue Rongluo Tablet cerebral infarction NEUROPROTECTION matrix metalloproteinase-9 buflomedil pyridoxal phosphate grants-supportedpaper NEUROREGENERATION
下载PDF
Interactions and Effects on Cysteine Synthase Activity of Aminooxyacetate and Boc-Aminooxyacetate on the Bioherbicides <i>Colletotrichum truncatum</i>and <i>Alternaria cassia</i>and Their Weed Hosts
2
作者 Robert E. Hoagland Kangetsu Hirase C. Douglas Boyette 《American Journal of Plant Sciences》 2021年第5期759-770,共12页
Aminooxyacetate (AOA) is a pyridoxal phosphate antagonist that inhibits various plant enzymes (including transaminases) which require pyridoxal phosphate as a cofactor and it exhibits phytotoxic and herbicidal propert... Aminooxyacetate (AOA) is a pyridoxal phosphate antagonist that inhibits various plant enzymes (including transaminases) which require pyridoxal phosphate as a cofactor and it exhibits phytotoxic and herbicidal properties. We examined AOA and its analog, </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">-butoxycarbonyl-AOA (Boc-AOA) for phytotoxicity, interactions with weed pathogens (bioherbicides), and effects on an important pyridoxal requiring enzyme, cysteine synthase (CS, E.C. 4.2.99.8). Studies were performed on two weeds, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;">, hemp sesbania [</span><i><span style="font-family:Verdana;">Sesbania exaltata</span></i><span style="font-family:Verdana;"> (Raf.) Rybd. Ex A.W. Hill] and sicklepod (</span><i><span style="font-family:Verdana;">Senna obtusifolia</span></i><span style="font-family:Verdana;">), and two pathogens, (</span><i><span style="font-family:Verdana;">Colletotrichum truncatum</span></i><span style="font-family:Verdana;"> and </span><i><span style="font-family:Verdana;">Alternaria cassiae</span></i><span style="font-family:Verdana;">), that are bioherbicidal agents against hemp sesbania and sicklepod, respectively. Pathogenicity tests, and assays for extractable, and </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">CS activities were utilized. Phytotoxicity bioassays indicated that the bulky </span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">-butoxycarbonyl moiety substitution on the AOA molecule did not substantially hinder expression of biological activity of Boc-AOA in these tests. Generally, spray application of the compounds to young dark-grown seedlings caused little growth effects, but root-feeding of the chemicals reduced growth (stem elongation) in both weeds. Hemp sesbania was generally more tolerant than sicklepod to these compounds. The only apparent positive interaction of the chemicals with these pathogens was the Boc-AOA:</span></span><span style="font-family:""> </span><i><span style="font-family:Verdana;">C. truncatum </span></i><span style="font-family:""><span style="font-family:Verdana;">combination treatment on hemp sesbania. Both compounds reduced extractable CS in the seedlings by 30%, 72 h after treatment. CS activity was reduced by 15% in hemp sesbania treated with </span><i><span style="font-family:Verdana;">C. truncatum</span></i><span style="font-family:Verdana;"> but increased 20% above control levels after infection of sicklepod by</span><i><span style="font-family:Verdana;"> A. cassiae</span></i><span style="font-family:Verdana;">. This latter effect suggests that CS may be involved in sicklepod defense mechanisms against this pathogen. 展开更多
关键词 Aminooxyacetate BIOHERBICIDE Cysteine Synthase pyridoxal phosphate Antagonist Sicklepod Senna obtusifolia Hemp Sesbania Sesbania exaltata Transaminase
下载PDF
Role of exocrine cells in pancreatic enhancement using Mn-DPDP-enhanced MR imaging
3
作者 龚静山 徐坚民 +1 位作者 周康荣 沈坤堂 《Chinese Medical Journal》 SCIE CAS CSCD 2002年第9期1363-1366,151-152,共4页
OBJECTIVE: To investigate role of exocrine cells in the pancreatic enhancement images at Manganese (II) N, N'-dipyridoxylethlenediamine-N, N'-diacetate 5, 5'-bisc (Mn-DPDP)-enhanced magnetic resonance (MR)... OBJECTIVE: To investigate role of exocrine cells in the pancreatic enhancement images at Manganese (II) N, N'-dipyridoxylethlenediamine-N, N'-diacetate 5, 5'-bisc (Mn-DPDP)-enhanced magnetic resonance (MR) imaging. METHODS: Artificial pancreatic leakage was constructed in six dogs using a fistula tube inserted into the duodenum papillae. Pancreatic juice was collected before and after intravenous infusion of 2 ml/kg of Mn-DPDP at a rate of 2 - 3 ml/min. The Mn content of pancreatic juice was measured by atomic absorption spectroscopy. T(1)-weighted spin-echo images and T(1)-weighted spoiled phase gradient-echo (SPGR) images were obtained prior and approximately 30 min after the administration of Mn-DPDP at 1.5T. RESULTS: The Mn content of pancreatic secretion increased 60.47 +/- 21.83 micro g/dl after the administration of Mn-DPDP (t = 6.785, P 展开更多
关键词 Contrast Media Image Enhancement Magnetic Resonance Imaging Animals DOGS Edetic Acid Manganese PANCREAS pyridoxal phosphate
原文传递
The bacterial effector AvrRxo1 inhibits vitamin B6 biosynthesis to promote infection in rice 被引量:2
4
作者 Haifeng Liu Chongchong Lu +9 位作者 Yang Li Tao Wu Baogang Zhang Baoyou Liu Wenjie Feng Qian Xu Hansong Dong Shengyang He Zhaohui Chu Xinhua Ding 《Plant Communications》 SCIE 2022年第3期89-101,共13页
Xanthomonas oryzae pv.oryzicola(Xoc),which causes rice bacterial leaf streak,invades leaves mainly through stomata,which are often closed as a plant immune response against pathogen invasion.How Xoc overcomes stomatal... Xanthomonas oryzae pv.oryzicola(Xoc),which causes rice bacterial leaf streak,invades leaves mainly through stomata,which are often closed as a plant immune response against pathogen invasion.How Xoc overcomes stomatal immunity is unclear.Here,we show that the effector protein AvrRxo1,an ATPdependent protease,enhances Xoc virulence and inhibits stomatal immunity by targeting and degrading rice OsPDX1(pyridoxal phosphate synthase),thereby reducing vitamin B6(VB6)levels in rice.VB6 is required for the activity of aldehyde oxidase,which catalyzes the last step of abscisic acid(ABA)biosynthesis,and ABA positively regulates rice stomatal immunity against Xoc.Thus,we provide evidence supporting a model in which a major bacterial pathogen inhibits plant stomatal immunity by directly targeting VB6 biosynthesis and consequently inhibiting the biosynthesis of ABA in guard cells to open stomata.Moreover,AvrRxo1-mediated VB6 targeting also explains the poor nutritional quality,including low VB6 levels,of Xoc-infected rice grains. 展开更多
关键词 rice bacterial leaf streak EFFECTOR stomatal immunity pyridoxal phosphate synthase vitamin B6(VB6) abscisic acid(ABA)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部