The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of l...The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.展开更多
A novel coating technique was developed for controlling Pyrite oxidation. The technique invo1ved leachingpyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide. Duringthe lea...A novel coating technique was developed for controlling Pyrite oxidation. The technique invo1ved leachingpyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide. Duringthe leaching process, the iron released from pyrite by hydrogen proxide was precipitated by phosphate as aferric phosphate coating. This coating was shown to be able to effectively prevent Pyrite from oxidation and itcould be established at the expense of only surface portions of Pyrite. The emergence of this technique couldprovide a unique potential route for abating acid mine drainage and reclaiming sulfide-containing degradedmining land.展开更多
The exposure of pyrite (FeS2) to atmospheric conditions during mining activity causes a series of complex oxidation reactions, resulting to acid generation and the subsequent release of toxic heavy metals in the surro...The exposure of pyrite (FeS2) to atmospheric conditions during mining activity causes a series of complex oxidation reactions, resulting to acid generation and the subsequent release of toxic heavy metals in the surrounding aquatic and terrestrial ecosystems. The produced acidic mine waters, known as acid mine drainage (AMD), constitute one the major environmental problems of both operating and abandoned mixed sulphide, coal and other mine sites where sulphidic minerals are encountered. A sustainable approach to the environmentally safe pyrite-bearing extractive waste management is related to the prevention of oxidation by developing artificial coatings on the pyrite surfaces. In this study, experiments performed to study the conditions of the silica coating formation on the FeS2 particles contained in a pyrite concentrate are presented. Batch tests involving the treatment of pyrite samples with a coating solution, consisting of Na2SiO3, H2O2 and buffered pH, were performed under a liquid to solid ratio (L/S) 100 l/kg. The effect of parameters including SiO2 concentration (5 - 50 mM), pH values (5.0 - 8.0) and contact time up to 24 hours, was investigated. Parameters examined to monitor the silica coating formation process include analysis of Fe, Si, ?and H2O2 in the aqueous phase. Scanning electron microscopy with energy dispersive spectrometry (SEM/EDS) was used for the examination of the chemically modified surfaces of silica-treated pyrite samples.展开更多
Acid mine drainage (AMD)and toxic metal release generated by oxidation of sulphide minerals, particularly pyrite, in mine wastes,are a critical environmental issue worldwide.Currently, there are many options to dimini...Acid mine drainage (AMD)and toxic metal release generated by oxidation of sulphide minerals, particularly pyrite, in mine wastes,are a critical environmental issue worldwide.Currently, there are many options to diminish sulphide oxidation including barrier methods that isolate pyrite from oxygen or water, chemical additives and inhibition of iron-oxidizing bacteria. This study focuses on understanding the rolethatsilicate and pH conditions play in the formation and stabilisation ofpyrite surface passivation layers found in lab and field studies.The results from pyrite dissolution tests under various conditions showed that the pyrite oxidation rate has been reduced by up to 60% under neutral pH with additional soluble silicate. Solution speciation calculation predicted that crystalline goethite is formed in the experiment without silicate additionbutan amorphous iron hydroxide surface layer is stabilizedby the addition of the silicate, inhibiting goethite formation and continuing pyrite oxidation.This coherent, continuous amorphous layer has been verified in SEM.展开更多
Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentratio...Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentrations of Fe+{3+}, the pH values, status of the flowing of the solution and the solution salinity (e.g. the concentrations of Na-2SO-4) and monitoring the galvanic currents and potentials, studies were conducted in this work on the galvanic interaction between pyrite acting as the anode and galena acting as the cathode. The results indicated that the concentrations of Fe+{3+}, pH values and the flowing of the solution exhibit a great effect on the galvanic interaction of galena-pyrite couple, while the salinity of the solution has only a slight influence on the interaction. The experiments also revealed that in case cracks exist on the surface of pyrite electrode, the potential of pyrite will decrease so sharply as to be lower than that of galena under the same experimental condition. The experimental results were explained in terms of the Butler-Volume equation and the theory of mixed potential.展开更多
基金financially supported from the National Natural Science Foundation of China(No.52164021)the Natural Science Foundation of Yunnan Province,China(No.2019FB078)。
文摘The lime-depressed pyrite from Cu differential flotation tailings with acid mine drainage(AMD)as a natural activator was recovered.The effect of AMD on lime-depressed pyrite flotation was investigated by a series of laboratory flotation tests and surface analytical techniques.Flotation test results indicated that AMD could effectively activate the pyrite flotation with a sodium butyl xanthate(SBX)collector,and a high-quality sulfur concentrate was obtained.Pulp ion concentration analysis results indicated that AMD facilitated desorption of Ca^(2+)and adsorption of Cu^(2+)on the depressed-pyrite surface.Adsorption measurements and contact angle analysis results confirmed that adding AMD improved the adsorption amount of SBX collector on the pyrite surface and increased the contact angle by 31°.Results of Raman spectroscopy and X-ray photoelectron spectroscopy analysis indicated that AMD treatment promoted the formation of hydrophobic species(S^(0) hydrophobic entity and copper sulfides)and the removal of hydrophilic calcium and iron species on the pyrite surface,which reinforced the adsorption of collector.The findings of the present research provide important theoretical basis and technical support for a cleaner production of copper sulfide ores.
文摘A novel coating technique was developed for controlling Pyrite oxidation. The technique invo1ved leachingpyrite particles with a solution containing low concentrations of phosphate and hydrogen peroxide. Duringthe leaching process, the iron released from pyrite by hydrogen proxide was precipitated by phosphate as aferric phosphate coating. This coating was shown to be able to effectively prevent Pyrite from oxidation and itcould be established at the expense of only surface portions of Pyrite. The emergence of this technique couldprovide a unique potential route for abating acid mine drainage and reclaiming sulfide-containing degradedmining land.
文摘The exposure of pyrite (FeS2) to atmospheric conditions during mining activity causes a series of complex oxidation reactions, resulting to acid generation and the subsequent release of toxic heavy metals in the surrounding aquatic and terrestrial ecosystems. The produced acidic mine waters, known as acid mine drainage (AMD), constitute one the major environmental problems of both operating and abandoned mixed sulphide, coal and other mine sites where sulphidic minerals are encountered. A sustainable approach to the environmentally safe pyrite-bearing extractive waste management is related to the prevention of oxidation by developing artificial coatings on the pyrite surfaces. In this study, experiments performed to study the conditions of the silica coating formation on the FeS2 particles contained in a pyrite concentrate are presented. Batch tests involving the treatment of pyrite samples with a coating solution, consisting of Na2SiO3, H2O2 and buffered pH, were performed under a liquid to solid ratio (L/S) 100 l/kg. The effect of parameters including SiO2 concentration (5 - 50 mM), pH values (5.0 - 8.0) and contact time up to 24 hours, was investigated. Parameters examined to monitor the silica coating formation process include analysis of Fe, Si, ?and H2O2 in the aqueous phase. Scanning electron microscopy with energy dispersive spectrometry (SEM/EDS) was used for the examination of the chemically modified surfaces of silica-treated pyrite samples.
文摘Acid mine drainage (AMD)and toxic metal release generated by oxidation of sulphide minerals, particularly pyrite, in mine wastes,are a critical environmental issue worldwide.Currently, there are many options to diminish sulphide oxidation including barrier methods that isolate pyrite from oxygen or water, chemical additives and inhibition of iron-oxidizing bacteria. This study focuses on understanding the rolethatsilicate and pH conditions play in the formation and stabilisation ofpyrite surface passivation layers found in lab and field studies.The results from pyrite dissolution tests under various conditions showed that the pyrite oxidation rate has been reduced by up to 60% under neutral pH with additional soluble silicate. Solution speciation calculation predicted that crystalline goethite is formed in the experiment without silicate additionbutan amorphous iron hydroxide surface layer is stabilizedby the addition of the silicate, inhibiting goethite formation and continuing pyrite oxidation.This coherent, continuous amorphous layer has been verified in SEM.
文摘Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentrations of Fe+{3+}, the pH values, status of the flowing of the solution and the solution salinity (e.g. the concentrations of Na-2SO-4) and monitoring the galvanic currents and potentials, studies were conducted in this work on the galvanic interaction between pyrite acting as the anode and galena acting as the cathode. The results indicated that the concentrations of Fe+{3+}, pH values and the flowing of the solution exhibit a great effect on the galvanic interaction of galena-pyrite couple, while the salinity of the solution has only a slight influence on the interaction. The experiments also revealed that in case cracks exist on the surface of pyrite electrode, the potential of pyrite will decrease so sharply as to be lower than that of galena under the same experimental condition. The experimental results were explained in terms of the Butler-Volume equation and the theory of mixed potential.
基金financially supported by the National Key Research and Development Program of China(Nos.2022YFC2105300,2022YFC2105304,2022YFC2105305)the Innovation-Driven Project of Central South University,China(No.1053320220066)。