油料作物由于含油量高、基质复杂,导致其弱极性多环芳烃类化合物提取率低,成为准确检测高油样品中多环芳烃的瓶颈。本文对比了16种多环芳烃的GC-MS/MS检测条件SIM(Single Ion Monitoring)模式和SRM(Selective Reaction Monitoring)模式...油料作物由于含油量高、基质复杂,导致其弱极性多环芳烃类化合物提取率低,成为准确检测高油样品中多环芳烃的瓶颈。本文对比了16种多环芳烃的GC-MS/MS检测条件SIM(Single Ion Monitoring)模式和SRM(Selective Reaction Monitoring)模式质谱信号响应,SRM模式干扰峰更少,检出限更低;对比了QuEChERS和超声辅助提取方法对大豆、油菜籽、花生三种油料中16种多环芳烃的提取效果,超声辅助提取的基质效应很高,部分多环芳烃基质减弱80%以上,且油菜籽的提取稳定性差,部分相对标准偏差达到32%~45%。并比较了乙腈和丙酮作为QuCEhERS方法提取溶剂的提取效果。结果表明,QuCEhERS方法中乙腈作为提取溶剂,在极性最弱的多环芳烃回收率低,如苯并[b]荧蒽、苯并[k]荧蒽等,回收率甚至小于10%。而丙酮作为QuCEhERS方法提取溶剂,而在极性弱的多环芳烃中,回收率提高了3~5倍,适合提取高油样品中多环芳烃。三种油料基质匹配标准曲线的相关系数均在0.99以上。16种多环芳烃均能获得较好的回收率(58%~100%),相对标准偏差为0.4%~10.6%,方法稳定性好。展开更多
Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar...Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
文摘油料作物由于含油量高、基质复杂,导致其弱极性多环芳烃类化合物提取率低,成为准确检测高油样品中多环芳烃的瓶颈。本文对比了16种多环芳烃的GC-MS/MS检测条件SIM(Single Ion Monitoring)模式和SRM(Selective Reaction Monitoring)模式质谱信号响应,SRM模式干扰峰更少,检出限更低;对比了QuEChERS和超声辅助提取方法对大豆、油菜籽、花生三种油料中16种多环芳烃的提取效果,超声辅助提取的基质效应很高,部分多环芳烃基质减弱80%以上,且油菜籽的提取稳定性差,部分相对标准偏差达到32%~45%。并比较了乙腈和丙酮作为QuCEhERS方法提取溶剂的提取效果。结果表明,QuCEhERS方法中乙腈作为提取溶剂,在极性最弱的多环芳烃回收率低,如苯并[b]荧蒽、苯并[k]荧蒽等,回收率甚至小于10%。而丙酮作为QuCEhERS方法提取溶剂,而在极性弱的多环芳烃中,回收率提高了3~5倍,适合提取高油样品中多环芳烃。三种油料基质匹配标准曲线的相关系数均在0.99以上。16种多环芳烃均能获得较好的回收率(58%~100%),相对标准偏差为0.4%~10.6%,方法稳定性好。
基金supported by the National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of the Shandong Province Government。
文摘Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.