期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Co-pyrolysis of waste biomass and waste plastics(polystyrene and waste nitrile gloves)into renewable fuel and value-added chemicals 被引量:9
1
作者 Ranjeet Kumar Mishra Kaustubha Mohanty 《Carbon Resources Conversion》 2020年第1期145-155,共11页
The present study addresses the influence of blending of waste plastics(i.e.,polystyrene,PS and waste nitrile gloves,WNG)with mahua seeds(MH)for co-pyrolytic liquid yield and its fuel properties.Various blends of wast... The present study addresses the influence of blending of waste plastics(i.e.,polystyrene,PS and waste nitrile gloves,WNG)with mahua seeds(MH)for co-pyrolytic liquid yield and its fuel properties.Various blends of waste plastics were mixed with biomass(10,20 and 30 wt%)and pyrolyzed in a semi-batch reactor at an optimized environment(550℃ temperature,80℃ min^(-1) heating rate,and 100 mL min^(-1) N_(2) flow rate).Physicochemical results displayed its ability to yield renewable fuel and valuable chemicals.Co-pyrolysis outcomes showed that blending of waste plastics at 20 wt%,yielded maximum liquid(44.18±1.2 wt%and 45.89±1.4 wt%for MH+WNG and MH+PS respectively)which was higher than thermal pyrolysis of individual MH(39.26±1.2 wt%).Further,characterization results revealed a substantial reduction in viscosity,oxygen content,moisture,and a positive increment in gross heating value,carbon content and acidity.FTIR examination exposed the attendance of mainly aromatics,acids,phenols,water,esters and ethers.Further,NMR analysis of pyrolytic oil confirmed an increase in aromaticity by blending of waste plastics(20 wt%)while there was a reduction in paraffinic compounds.GC-MS investigation revealed substantial improvement in hydrocarbons and minimization in the oxygen-rich products by blending of waste plastics at 20 wt%. 展开更多
关键词 Waste biomass Plastics CO-PYROLYSIS pyrolytic oil Fuel characterization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部