In dynamic problems the electric and magnetic fields are inseparable. At the same time, a multitude of electrostatic and magnetostatic effects permit mutually independent description. This separation appears to be pos...In dynamic problems the electric and magnetic fields are inseparable. At the same time, a multitude of electrostatic and magnetostatic effects permit mutually independent description. This separation appears to be possible and thermodynamically consistent when the bulk energy density depends only on the polarization density or, alternatively, on the magnetization density. However, when the bulk energy density depends simultaneously on the both densities, then, the electrostatic and magnetostatic effects should be studied together. There appear interesting cross-effects;among those are the change of the internal electrostatic field inside a specimen under the influence of the external magnetic fields, and vice versa. Below, in the framework of thermodynamic approach the boundary value problem for magnetoelectric plate is formulated and analyzed. The exact solution is established for the isotropic pyroelectric plate.展开更多
In pyroelectric materials there is a spontaneous dielectric polarization.When raising the temperature,then a voltage appears in the system.In the present manuscript a phenomenological theory of pyroelectricity is deve...In pyroelectric materials there is a spontaneous dielectric polarization.When raising the temperature,then a voltage appears in the system.In the present manuscript a phenomenological theory of pyroelectricity is developed.展开更多
The measurement system is the main equipment of the project.Based on the characteristic of experiment system,a sensor array is designed,and used to continually acquire the global magnetic field.A scientific scheme is ...The measurement system is the main equipment of the project.Based on the characteristic of experiment system,a sensor array is designed,and used to continually acquire the global magnetic field.A scientific scheme is developed to get the signal processing and temperature compensation for nondirective weak magnetic field.The software of sampling control system is given,which is complied using C language in Labwindows/CVI.Taking computer as main engine,the system can acquire the nondirective weak magnetic field automatically and continuously use the sensor array,the change of magnetic field can be shown in real-time and intuitively.展开更多
A finite element approach based on the micromechanics was performed to estimate the multi-field properties of electro-magneto-thermoelastic composites. The thermal field and the involved pyroelectric and pyromagnetic ...A finite element approach based on the micromechanics was performed to estimate the multi-field properties of electro-magneto-thermoelastic composites. The thermal field and the involved pyroelectric and pyromagnetic effect of the multi-phase composite materials were taken into account in the investigation and implemented in the finite element modeling. The multi- fields related to the electric field, magnetic field, deformation and temperature field, as well as their coupling effects of the smart composites under periodic boundary conditions were obtained numerically. Especially, by means of the homogenization approximation, the effective thermal ex- pansion coefficients, pyroelectric coefficients, pyromagnetic coefficients and other elastic, electric, and magnetic properties for the piezoelectric material, piezomagnetic material and magnetoelec- tric material were calculated, respectively. Some results are compared to the theoretical predictions by the well-known Mori-Tanaka method to show good agreements.展开更多
文摘In dynamic problems the electric and magnetic fields are inseparable. At the same time, a multitude of electrostatic and magnetostatic effects permit mutually independent description. This separation appears to be possible and thermodynamically consistent when the bulk energy density depends only on the polarization density or, alternatively, on the magnetization density. However, when the bulk energy density depends simultaneously on the both densities, then, the electrostatic and magnetostatic effects should be studied together. There appear interesting cross-effects;among those are the change of the internal electrostatic field inside a specimen under the influence of the external magnetic fields, and vice versa. Below, in the framework of thermodynamic approach the boundary value problem for magnetoelectric plate is formulated and analyzed. The exact solution is established for the isotropic pyroelectric plate.
文摘In pyroelectric materials there is a spontaneous dielectric polarization.When raising the temperature,then a voltage appears in the system.In the present manuscript a phenomenological theory of pyroelectricity is developed.
基金Project(10672191)supported by the National Natural Science Foundation of ChinaProject(06JJ2059)supported by the Provincial Natural Science Foundation of Hunan,ChinaProject(KF0607) supported by the Key Laboratory of Low Dimensional Materials and Application Technology (Xiangtan University),Ministry of Education,China
文摘The measurement system is the main equipment of the project.Based on the characteristic of experiment system,a sensor array is designed,and used to continually acquire the global magnetic field.A scientific scheme is developed to get the signal processing and temperature compensation for nondirective weak magnetic field.The software of sampling control system is given,which is complied using C language in Labwindows/CVI.Taking computer as main engine,the system can acquire the nondirective weak magnetic field automatically and continuously use the sensor array,the change of magnetic field can be shown in real-time and intuitively.
基金supported by the National Natural Science Foundation of China(No.11172117)Doctoral Fund of Ministry of Education of China(No.20120211110005)the Foundation for Innovative Research Groups of the NNSFC(No.11121202)
文摘A finite element approach based on the micromechanics was performed to estimate the multi-field properties of electro-magneto-thermoelastic composites. The thermal field and the involved pyroelectric and pyromagnetic effect of the multi-phase composite materials were taken into account in the investigation and implemented in the finite element modeling. The multi- fields related to the electric field, magnetic field, deformation and temperature field, as well as their coupling effects of the smart composites under periodic boundary conditions were obtained numerically. Especially, by means of the homogenization approximation, the effective thermal ex- pansion coefficients, pyroelectric coefficients, pyromagnetic coefficients and other elastic, electric, and magnetic properties for the piezoelectric material, piezomagnetic material and magnetoelec- tric material were calculated, respectively. Some results are compared to the theoretical predictions by the well-known Mori-Tanaka method to show good agreements.