The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS s...The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS spectra of these adsorption configurations have been calculated by using the density functional theory(DFT)method and fullcore hole(FCH)approximation to investigate the relationship between the adsorption configurations and the spectra.The result shows that the XPS and NEXAFS spectra are structurally dependent on the configurations of pyrrole absorbed on the Si(100)surface.Compared with the XPS,the NEXAFS spectra are relatively sensitive to the adsorption configurations and can accurately identify them.The NEXAFS decomposition spectra produced by non-equivalent carbon atoms have also been calculated and show that the spectral features vary with the diverse types of carbon atoms and their structural environments.展开更多
BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanis...BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact mo...BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.展开更多
This editorial discusses the findings of Elbarky et al on the role of selenoprotein P1(SEPP1)in pediatric obesity and insulin resistance.Their study uncovered si-gnificantly lower SEPP1 Levels in children who were obe...This editorial discusses the findings of Elbarky et al on the role of selenoprotein P1(SEPP1)in pediatric obesity and insulin resistance.Their study uncovered si-gnificantly lower SEPP1 Levels in children who were obese compared with hea-lthy peers,demonstrating a negative correlation between SEPP1 levels and mea-sures of adiposity and insulin resistance.These findings suggest that SEPP1 is a biomarker useful in the early identification of insulin resistance in pediatric populations.This editorial emphasizes the clinical implications of the study and calls for further research to validate and explore the role of SEPP1 in metabolic health.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2022MA025 and ZR2020MA077).
文摘The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS spectra of these adsorption configurations have been calculated by using the density functional theory(DFT)method and fullcore hole(FCH)approximation to investigate the relationship between the adsorption configurations and the spectra.The result shows that the XPS and NEXAFS spectra are structurally dependent on the configurations of pyrrole absorbed on the Si(100)surface.Compared with the XPS,the NEXAFS spectra are relatively sensitive to the adsorption configurations and can accurately identify them.The NEXAFS decomposition spectra produced by non-equivalent carbon atoms have also been calculated and show that the spectral features vary with the diverse types of carbon atoms and their structural environments.
基金Supported by the National Research Foundation of Korea,No.2020R1A2C1100891Soonchunhyang University Research Fund,No.2024-05-014.
文摘BACKGROUND The high prevalence of human papillomavirus(HPV)infection in oropharyngeal squamous cell carcinoma(SCC)is well established,and p16 expression is a strong predictor.HPV-related tumors exhibit unique mechanisms that target p16 and p53 proteins.However,research on HPV prevalence and the combined predictive value of p16 and p53 expression in head and neck cutaneous SCC(HNCSCC),particularly in Asian populations,remains limited.This retrospective study surveyed 62 patients with HNSCC(2011-2020),excluding those with facial warts or other skin cancer.AIM To explore the prevalence of HPV and the predictive value of p16 and p53 expression in HNCSCC in Asian populations.METHODS All patients underwent wide excision and biopsy.Immunohistochemical staining for HPV,p16,and p53 yielded positive and negative results.The relevance of each marker was investigated by categorizing the tumor locations into high-risk and middle-risk zones based on recurrence frequency.RESULTS Of the 62 patients,20(32.26%)were male,with an average age of 82.27 years(range 26-103 years).High-risk included 19 cases(30.65%),with the eyelid and lip being the most common sites(five cases,8.06%).Middle-risk included 43 cases(69.35%),with the cheek being the most common(29 cases,46.77%).The p16 expression was detected in 24 patients(38.71%),p53 expression in 42 patients(72.58%),and HPV in five patients(8.06%).No significant association was found between p16 expression and the presence of HPV(P>0.99),with a positive predictive value of 8.33%.CONCLUSION This study revealed that p16,a surrogate HPV marker in oropharyngeal SCC,is not reliable in HNCSCC,providing valuable insights for further research in Asian populations.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金Supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBJC00001the Key Discipline Special Project of Tianjin Municipal Health Commission,No.TJWJ2022XK016.
文摘BACKGROUND Hepatocellular carcinoma(HCC)has been a pervasive malignancy throughout the world with elevated mortality.Efficient therapeutic targets are beneficial to treat and predict the disease.Currently,the exact molecular mechanisms leading to the progression of HCC are still unclear.Research has shown that the microRNA-142-3p level decreases in HCC,whereas bioinformatics analysis of the cancer genome atlas database shows the ASH1L expression increased among liver tumor tissues.In this paper,we will explore the effects and mechanisms of microRNA-142-3p and ASH1L affect the prognosis of HCC patients and HCC cell bioactivity,and the association between them.AIM To investigate the effects and mechanisms of microRNA-142-3p and ASH1L on the HCC cell bioactivity and prognosis of HCC patients.METHODS In this study,we grouped HCC patients according to their immunohistochemistry results of ASH1L with pathological tissues,and retrospectively analyzed the prognosis of HCC patients.Furthermore,explored the roles and mechanisms of microRNA-142-3p and ASH1L by cellular and animal experiments,which involved the following experimental methods:Immunohistochemical staining,western blot,quantitative real-time-polymerase chain reaction,flow cytometric analysis,tumor xenografts in nude mice,etc.The statistical methods involved in this study contained t-test,one-way analysis of variance,theχ^(2)test,the Kaplan-Meier approach and the log-rank test.RESULTS In this study,we found that HCC patients with high expression of ASH1L possess a more recurrence rate as well as a decreased overall survival rate.ASH1L promotes the tumorigenicity of HCC and microRNA-142-3p exhibits reduced expression in HCC tissues and interacts with ASH1L through targeting the ASH1L 3′untranslated region.Furthermore,microRNA-142-3p promotes apoptosis and inhibits proliferation,invasion,and migration of HCC cell lines in vitro via ASH1L.For the exploration mechanism,we found ASH1L may promote an immunosuppressive microenvironment in HCC and ASH1L affects the expression of the cell junction protein zonula occludens-1,which is potentially relevant to the immune system.CONCLUSION Loss function of microRNA-142-3p induces cancer progression and immune evasion through upregulation of ASH1L in HCC.Both microRNA-142-3p and ASH1L can feature as new biomarker for HCC in the future.
文摘This editorial discusses the findings of Elbarky et al on the role of selenoprotein P1(SEPP1)in pediatric obesity and insulin resistance.Their study uncovered si-gnificantly lower SEPP1 Levels in children who were obese compared with hea-lthy peers,demonstrating a negative correlation between SEPP1 levels and mea-sures of adiposity and insulin resistance.These findings suggest that SEPP1 is a biomarker useful in the early identification of insulin resistance in pediatric populations.This editorial emphasizes the clinical implications of the study and calls for further research to validate and explore the role of SEPP1 in metabolic health.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.