3-(Pyrrole-2?-carboxamido)propanoic acid I has been synthesized from the reaction of β-alanine methyl ester with 2-trichloroacetylpyrrole followed by saponifying and acidating in 85.4% yield, and the crystal structur...3-(Pyrrole-2?-carboxamido)propanoic acid I has been synthesized from the reaction of β-alanine methyl ester with 2-trichloroacetylpyrrole followed by saponifying and acidating in 85.4% yield, and the crystal structure of 3-(pyrrole-2?-carboxamido)propanoic acid· (1/2)H2O (C8H11N2O3.5, Mr = 191.19) was obtained and determined by X-ray diffraction method. The crystal is of monoclinic, space group C2/c with a = 19.010(4), b = 8.3515(17), c = 13.788(3) ?, β = 125.88(3)o, V = 1773.6(6) ?3, Z = 8, Dc = 1.432 g/cm3, λ = 0.71073 ?, μ(MoKα) = 0.114 mm?1 and F(000) = 768. The structure was refined to R = 0.0354 and wR = 0.0942 for 1642 observed reflections with I > 2σ(I). It is revealed that the title compound has one pyrrole ring and one propionic acid subchain linked by an amido bond at C(4), and there are 8 molecules of com- pound I and 4 crystal water molecules in each unit cell. The supramolecular layers are stabilized by the hydrogen bonds of N(2) H…O(2), N(1) H…O(4), O(4) H(1W)…O(2) and O(3) H…O(1).展开更多
The decarboxylation of pyrrole-2-carboxylic acid in acid solutions was elucidated by full optimization with the CPCM solvation model at the B3LYP/6-31 l++G(d,p) level. Compared with the single-point energy calcula...The decarboxylation of pyrrole-2-carboxylic acid in acid solutions was elucidated by full optimization with the CPCM solvation model at the B3LYP/6-31 l++G(d,p) level. Compared with the single-point energy calculation, CPCM full optimization is better to model solvent environments to gain reasonable reaction mechanisms. The π interactions play a significant role in the decarboxylation of pyrrole-2-carboxylic acid (R). Firstly, the a hydrogen is protonated, but all of the carbonyl hydration pathways bear relatively higher energy barriers. The carbonyl group can rove over the pyrrole ring, but it does not lead to the speciation of pyrrole and protonated carbon dioxide for the latter is an energy-rich species. The decarboxylation mechanism proposed here is that, the protonated pyrrole-2-carboxylic acid (RH) decarboxylates via direct C-C bond cleavage with the aid of a water molecule to accommodate the proton on the carbonyl group.展开更多
A series of N-substituted (Z)-3-((2-benzyl)-4-oxopent-2-yl)pyrrole-2,5-diones were synthesized and characterized. The compounds were synthesized from dimethyl-2-((Z)-2-(benzylamino)-4-oxopent-2-en-3-yl) fu...A series of N-substituted (Z)-3-((2-benzyl)-4-oxopent-2-yl)pyrrole-2,5-diones were synthesized and characterized. The compounds were synthesized from dimethyl-2-((Z)-2-(benzylamino)-4-oxopent-2-en-3-yl) fumarate (9) and dimethyl acetylenedi-carboxylate followed by reaction with some amines in refluxing ethanol. The identification of the compounds were based on spectroscopic analysis such as 1R (infrared), UV (ultraviolet), ^1H-NMR (nuclear magnetic resonance) and the microanalysis of the elements (CHN (microanalysis)) data.展开更多
The mechanisms of the acid-catalyzed decarboxylation of pyrrole-2-carboxylic acid and mesitoic acid have been investigated based on density functional theory calculations at the B3LYP/6-311G (d,p) level. A polarizable...The mechanisms of the acid-catalyzed decarboxylation of pyrrole-2-carboxylic acid and mesitoic acid have been investigated based on density functional theory calculations at the B3LYP/6-311G (d,p) level. A polarizable continuum model (PCM) has been established in order to evaluate the effects of solvents on these reactions. The results of the calculations indicate that the first step of the acid-catalyzed decarboxylation of the pyrrole-2-carboxylic acid has two possible pathways,that is,the proton of H3O+ attacks either the-carbon atom or the carboxyl oxygen atom. The subsequent process of forming a four-membered ring transition state is the rate-determining step. The activation energies of acid-catalyzed decarboxylation of pyrrole-2-carboxylic acid proceeding via attack at the-carbon atom and the carboxyl oxygen atom are determined to be 194.21 and 210.41 kJ/mol,respectively. The computational results show that both pathways are favored. However,for the reaction of mesitoic acid with H3O+,the reaction barrier for the former pathway is calculated to be 212.15 kJ/mol,whilst the latter pathway has a reaction barrier of 200.45 kJ/mol. Our computational results are consistent with the experimental observations of Mundle and Kluger.展开更多
The proposed technique to synthesise poly {(2,5-diyl pyrrole)(2-pyrrolyl methine)}(PPPM) copolymer by condensation of pyrrole and pyrrole-2-carboxaldehyde monomers catalyzed by Maghnite-H+ is introduced.The pro...The proposed technique to synthesise poly {(2,5-diyl pyrrole)(2-pyrrolyl methine)}(PPPM) copolymer by condensation of pyrrole and pyrrole-2-carboxaldehyde monomers catalyzed by Maghnite-H+ is introduced.The protons are exchanged with Maghnite-H+, which is available in the form of a montmorillonite silicate clay sheet. The effect of several parameters such as time and temperature of copolymerization, [pyrrole]/[pyrrole-2-carboxaldehyde] molar ratio, amount of Maghnite-H+, and solvent on the produced poly(2,5-diyl pyrrole-2-pyrrolyl methine) semiconductor copolymer material(yield%) was investigated. The synthesized PPPM copolymer was characterized using nuclear magnetic resonance, Fourier transform infrared, and ultraviolet-visible spectroscopy.The results show that the synthesized copolymer using the copolymerization technique is a real organic copolymer consisting of two monomers units(i.e, pyrrole and pyrrole-2-carboxaldehyde). Also, the synthesized copolymer is more soluble than polypyrrole in most of the commonly used organic solvents. Hence, copolymerization of pyrrole with pyrrole-2-carboxaldehyde will overcome the insolubility of polypyrrole. In addition, the resultant copolymer exhibits good film formability. The produced copolymer has several potential applications in the field of rechargeable batteries, sensors, capacitors, light emitting diodes, optical displays, and solar cells.展开更多
基金The project was supported by the National 863 Program of China(No.2004AA628030)Natural Science Foundation of Guangdong Province(No.31920)
文摘3-(Pyrrole-2?-carboxamido)propanoic acid I has been synthesized from the reaction of β-alanine methyl ester with 2-trichloroacetylpyrrole followed by saponifying and acidating in 85.4% yield, and the crystal structure of 3-(pyrrole-2?-carboxamido)propanoic acid· (1/2)H2O (C8H11N2O3.5, Mr = 191.19) was obtained and determined by X-ray diffraction method. The crystal is of monoclinic, space group C2/c with a = 19.010(4), b = 8.3515(17), c = 13.788(3) ?, β = 125.88(3)o, V = 1773.6(6) ?3, Z = 8, Dc = 1.432 g/cm3, λ = 0.71073 ?, μ(MoKα) = 0.114 mm?1 and F(000) = 768. The structure was refined to R = 0.0354 and wR = 0.0942 for 1642 observed reflections with I > 2σ(I). It is revealed that the title compound has one pyrrole ring and one propionic acid subchain linked by an amido bond at C(4), and there are 8 molecules of com- pound I and 4 crystal water molecules in each unit cell. The supramolecular layers are stabilized by the hydrogen bonds of N(2) H…O(2), N(1) H…O(4), O(4) H(1W)…O(2) and O(3) H…O(1).
基金supported by the National Natural Science Foundation of China(11174215)Natural Science Foundation of Shandong Province(ZR2012BL10 and ZR2010BL017)+1 种基金the University Science and Technology Project of Shandong Province(No.J13LD05)the Science and Technology Planning Project of Tai'an City(20102024)
文摘The decarboxylation of pyrrole-2-carboxylic acid in acid solutions was elucidated by full optimization with the CPCM solvation model at the B3LYP/6-31 l++G(d,p) level. Compared with the single-point energy calculation, CPCM full optimization is better to model solvent environments to gain reasonable reaction mechanisms. The π interactions play a significant role in the decarboxylation of pyrrole-2-carboxylic acid (R). Firstly, the a hydrogen is protonated, but all of the carbonyl hydration pathways bear relatively higher energy barriers. The carbonyl group can rove over the pyrrole ring, but it does not lead to the speciation of pyrrole and protonated carbon dioxide for the latter is an energy-rich species. The decarboxylation mechanism proposed here is that, the protonated pyrrole-2-carboxylic acid (RH) decarboxylates via direct C-C bond cleavage with the aid of a water molecule to accommodate the proton on the carbonyl group.
文摘A series of N-substituted (Z)-3-((2-benzyl)-4-oxopent-2-yl)pyrrole-2,5-diones were synthesized and characterized. The compounds were synthesized from dimethyl-2-((Z)-2-(benzylamino)-4-oxopent-2-en-3-yl) fumarate (9) and dimethyl acetylenedi-carboxylate followed by reaction with some amines in refluxing ethanol. The identification of the compounds were based on spectroscopic analysis such as 1R (infrared), UV (ultraviolet), ^1H-NMR (nuclear magnetic resonance) and the microanalysis of the elements (CHN (microanalysis)) data.
基金supported by the Natural Science Foundation of Gansu Province (0710RJZA114)the Natural Science Foundation of Department of Education, Gansu Province (0801-10, 1013B-01)
文摘The mechanisms of the acid-catalyzed decarboxylation of pyrrole-2-carboxylic acid and mesitoic acid have been investigated based on density functional theory calculations at the B3LYP/6-311G (d,p) level. A polarizable continuum model (PCM) has been established in order to evaluate the effects of solvents on these reactions. The results of the calculations indicate that the first step of the acid-catalyzed decarboxylation of the pyrrole-2-carboxylic acid has two possible pathways,that is,the proton of H3O+ attacks either the-carbon atom or the carboxyl oxygen atom. The subsequent process of forming a four-membered ring transition state is the rate-determining step. The activation energies of acid-catalyzed decarboxylation of pyrrole-2-carboxylic acid proceeding via attack at the-carbon atom and the carboxyl oxygen atom are determined to be 194.21 and 210.41 kJ/mol,respectively. The computational results show that both pathways are favored. However,for the reaction of mesitoic acid with H3O+,the reaction barrier for the former pathway is calculated to be 212.15 kJ/mol,whilst the latter pathway has a reaction barrier of 200.45 kJ/mol. Our computational results are consistent with the experimental observations of Mundle and Kluger.
文摘The proposed technique to synthesise poly {(2,5-diyl pyrrole)(2-pyrrolyl methine)}(PPPM) copolymer by condensation of pyrrole and pyrrole-2-carboxaldehyde monomers catalyzed by Maghnite-H+ is introduced.The protons are exchanged with Maghnite-H+, which is available in the form of a montmorillonite silicate clay sheet. The effect of several parameters such as time and temperature of copolymerization, [pyrrole]/[pyrrole-2-carboxaldehyde] molar ratio, amount of Maghnite-H+, and solvent on the produced poly(2,5-diyl pyrrole-2-pyrrolyl methine) semiconductor copolymer material(yield%) was investigated. The synthesized PPPM copolymer was characterized using nuclear magnetic resonance, Fourier transform infrared, and ultraviolet-visible spectroscopy.The results show that the synthesized copolymer using the copolymerization technique is a real organic copolymer consisting of two monomers units(i.e, pyrrole and pyrrole-2-carboxaldehyde). Also, the synthesized copolymer is more soluble than polypyrrole in most of the commonly used organic solvents. Hence, copolymerization of pyrrole with pyrrole-2-carboxaldehyde will overcome the insolubility of polypyrrole. In addition, the resultant copolymer exhibits good film formability. The produced copolymer has several potential applications in the field of rechargeable batteries, sensors, capacitors, light emitting diodes, optical displays, and solar cells.