期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Analysis of the potential biological value of pyruvate dehydrogenase E1 subunitβin human cancer
1
作者 Yao Rong Song-Hua Liu +4 位作者 Ming-Zheng Tang Zhi-Hang Wu Guo-Rong Ma Xiao-Feng Li Hui Cai 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第1期144-181,共38页
BACKGROUND The pyruvate dehydrogenase E1 subunitβ(PDHB)gene which regulates energy metabolism is located in mitochondria.However,few studies have elucidated the role and mechanism of PDHB in different cancers.AIM To ... BACKGROUND The pyruvate dehydrogenase E1 subunitβ(PDHB)gene which regulates energy metabolism is located in mitochondria.However,few studies have elucidated the role and mechanism of PDHB in different cancers.AIM To comprehensive pan-cancer analysis of PDHB was performed based on bioinformatics approaches to explore its tumor diagnostic and prognostic value and tumor immune relevance in cancer.In vitro experiments were performed to examine the biological regulation of PDHB in liver cancer.METHODS Pan-cancer data related to PDHB were obtained from the Cancer Genome Atlas(TCGA)database.Analysis of the gene expression profiles of PDHB was based on TCGA and Genotype Tissue Expression Dataset databases.Cox regression analysis and Kaplan-Meier methods were used to assess the correlation between PDHB expression and survival prognosis in cancer patients.The correlation between PDHB and receiver operating characteristic diagnostic curve,clinicopathological staging,somatic mutation,tumor mutation burden(TMB),microsatellite instability(MSI),DNA methylation,and drug susceptibility in pan-cancer was also analyzed.Various algorithms were used to analyze the correlation between PDHB and immune cell infiltration and tumor chemotaxis environment,as well as the co-expression analysis of PDHB and immune checkpoint(ICP)genes.The expression and functional phenotype of PDHB in single tumor cells were studied by single-cell sequencing,and the functional enrichment analysis of PDHB-related genes was performed.The study also validated the level of mRNA or protein expression of PDHB in several cancers.Finally,in vitro experiments verified the regulatory effect of PDHB on the proliferation,migration,and invasion of liver cancer.RESULTS PDHB was significantly and differently expressed in most cancers.PDHB was significantly associated with prognosis in patients with a wide range of cancers,including kidney renal clear cell carcinoma,kidney renal papillary cell carcinoma,breast invasive carcinoma,and brain lower grade glioma.In some cancers,PDHB expression was clearly associated with gene mutations,clinicopathological stages,and expression of TMB,MSI,and ICP genes.The expression of PDHB was closely related to the infiltration of multiple immune cells in the immune microenvironment and the regulation of tumor chemotaxis environment.In addition,single-cell sequencing results showed that PDHB correlated with different biological phenotypes of multiple cancer single cells.This study further demonstrated that down-regulation of PDHB expression inhibited the proliferation,migration,and invasion functions of hepatoma cells.CONCLUSION As a member of pan-cancer,PDHB may be a novel cancer marker with potential value in diagnosing cancer,predicting prognosis,and in targeted therapy. 展开更多
关键词 Cuprotosis pyruvate dehydrogenase e1 subunitβ Pan-cancer PROGNOSIS Liver cancer
下载PDF
AAZ2 induces mitochondrial-dependent apoptosis by targeting PDK1 in gastric cancer 被引量:1
2
作者 Yi LI Wenyan SHE +9 位作者 Xiaoran XU Yixin LIU Xinyu WANG Sheng TIAN Shiyi LI Miao WANG Chaochao YU Pan LIU Tianhe HUANG Yongchang WEI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2023年第3期232-247,共16页
Drastic surges in intracellular reactive oxygen species(ROS)induce cell apoptosis,while most chemotherapy drugs lead to the accumulation of ROS.Here,we constructed an organic compound,arsenical N-(4-(1,3,2-dithiarsina... Drastic surges in intracellular reactive oxygen species(ROS)induce cell apoptosis,while most chemotherapy drugs lead to the accumulation of ROS.Here,we constructed an organic compound,arsenical N-(4-(1,3,2-dithiarsinan-2-yl)phenyl)acrylamide(AAZ2),which could prompt the ROS to trigger mitochondrial-dependent apoptosis in gastric cancer(GC).Mechanistically,by targeting pyruvate dehydrogenase kinase 1(PDK1),AAZ2 caused metabolism alteration and the imbalance of redox homeostasis,followed by the inhibition of phosphoinositide-3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)pathway and leading to the activation of B-cell lymphoma 2(Bcl2)/Bcl2-associated X(Bax)/caspase-9(Cas9)/Cas3 cascades.Importantly,our in vivo data demonstrated that AAZ2 could inhibit the growth of GC xenograft.Overall,our data suggested that AAZ2 could contribute to metabolic abnormalities,leading to mitochondrial-dependent apoptosis by targeting PDK1 in GC. 展开更多
关键词 N-(4-(1 3 2-dithiarsinan-2-yl)phenyl)acrylamide(AAZ2) Gastric cancer Reactive oxygen species(ROS) Apoptosis pyruvate dehydrogenase kinase 1(PDK1) Glucose metabolism
原文传递
Dichloroacetic acid and rapamycin synergistically inhibit tumor progression
3
作者 Huan CHEN Kunming LIANG +1 位作者 Cong HOU Hai-long PIAO 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2023年第5期397-405,共9页
Mammalian target of rapamycin(mTOR)controls cellular anabolism,and mTOR signaling is hyperactive in most cancer cells.As a result,inhibition of mTOR signaling benefits cancer patients.Rapamycin is a US Food and Drug A... Mammalian target of rapamycin(mTOR)controls cellular anabolism,and mTOR signaling is hyperactive in most cancer cells.As a result,inhibition of mTOR signaling benefits cancer patients.Rapamycin is a US Food and Drug Administration(FDA)-approved drug,a specific mTOR complex 1(mTORC1)inhibitor,for the treatment of several different types of cancer.However,rapamycin is reported to inhibit cancer growth rather than induce apoptosis.Pyruvate dehydrogenase complex(PDHc)is the gatekeeper for mitochondrial pyruvate oxidation.PDHc inactivation has been observed in a number of cancer cells,and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide(NAD^(+))exhaustion.In this paper,we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1(PDHA1)phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells.This inactivation reduces the sensitivity of cancer cells'response to rapamycin.As a result,rebooting PDHc activity with dichloroacetic acid(DCA),a pyruvate dehydrogenase kinase(PDK)inhibitor,promotes cancer cells'susceptibility to rapamycin treatment in vitro and in vivo. 展开更多
关键词 Dichloroacetic acid(DCA) RAPAMYCIN pyruvate dehydrogenase e1 subunit alpha 1(PDHA1) Mammalian target of rapamycin(mTOR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部