Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over...Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals.展开更多
Acrolein in spinal cord injury:The propensity of reactive aldehydes such as acrolein to both initiate and perpetuate tissue damage after spinal cord injury (SCI) is well established.Formed primarily from lipid peroxid...Acrolein in spinal cord injury:The propensity of reactive aldehydes such as acrolein to both initiate and perpetuate tissue damage after spinal cord injury (SCI) is well established.Formed primarily from lipid peroxidation,acrolein is known to be one of the most reactive aldehydes.Acrolein will quickly overwhelm endogenous clearance mechanisms and antioxidants,and form adductswith lipids,proteins,and DNA.展开更多
As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective...As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.展开更多
The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid a...The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.展开更多
基金supported by the National Natural Science Foundation of China(22078374,21776324)the Scientific and Technological Planning Project of Guangzhou(202206010145)+2 种基金the National Ten Thousand Talent Plan,Key-Area Research and Development Program of Guangdong Province(2019B110209003)the Guangdong Basic and Applied Basic Research Foundation(2019B1515120058,2020A1515011149)the Start-up Fund for Senior Talents in Jiangsu University(21JDG060)。
文摘Selective upgrading of C=O bonds to afford carboxylic acid is significant for the petrochemical industry and biomass utilization.Here we declared the efficient electrooxidation of biomass-derived aldehydes family over NiV-layered double hydroxides(LDHs) thin films.Mechanistic studies confirmed the hydroxyl active intermediate(-OH*) generated on the surface of NiV-LDHs films by employing electrochemical impedance spectroscopy and the electron paramagnetic resonance spectroscopy.By using advanced techniques,e.g.,extended X-ray absorption fine structure and high-angle annular dark-field scanning transmission electron microscopy,NiV-LDHs films with 2.6 nm could expose larger specific surface area.Taking benzaldehyde as a model,high current density of 200 mA cm^(-2)at 1.8 V vs.RHE,81.1% conversion,77.6% yield of benzoic acid and 90.8% Faradaic efficiency were reached,which was superior to most of previous studies.Theoretical DFT analysis was well matched with experimental findings and documented that NiV-LDHs had high adsorption capacity for the aldehydes to suppress the side reaction,and the aldehydes were oxidized by the electrophilic hydroxyl radicals formed on NiV-LDHs.Our findings offer a universal strategy for the robust upgrading of diverse biomass-derived platform chemicals.
文摘Acrolein in spinal cord injury:The propensity of reactive aldehydes such as acrolein to both initiate and perpetuate tissue damage after spinal cord injury (SCI) is well established.Formed primarily from lipid peroxidation,acrolein is known to be one of the most reactive aldehydes.Acrolein will quickly overwhelm endogenous clearance mechanisms and antioxidants,and form adductswith lipids,proteins,and DNA.
基金supported by the National Key Research and Development Program of China(2019YFA0210302)the National Natural Science Foundation of China(21878009).
文摘As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.
文摘The technique for preparing phenol formaldehyde resin from phenolated wood (PWF) and its characters were studied and analyzed. Poplar (Populus spp.) wood meal was liquefied by phenol in the presence of sulfuric acid as a catalyst. After the liquefied products were cooled, alkaline catalyst and formaldehyde were added. The mixture was kept at (60?) C for 1h and then was heated to (85?) C for 1h. The influence of molar ratio of formaldehyde to phenol (F/P) was investigated. The results showed when the molar ratio of formaldehyde to phenol was over 1.8, the PWF adhesives had high bond quality, bond durability and extremely low aldehydes emissions.