期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
德摩根拓扑代数上的紧性与q-收敛性 被引量:1
1
作者 陈学友 《模糊系统与数学》 CSCD 1998年第2期18-20,共3页
在文[1]、[2]、[3]的基础上,我们首先在德摩根拓扑代数上用有限覆盖性质定义了紧性,并引入-元,-d-q-聚点等概念,并着重讨论了紧性与q-收敛性之间的关系。
关键词 德摩根拓扑代数 拓扑代数 q收敛性
下载PDF
m-广义负相依随机阵列的完全q阶矩收敛性
2
作者 何其慧 《通化师范学院学报》 2022年第6期28-34,共7页
利用m-广义负相依(m-END)随机变量的性质以及END随机变量的指数不等式建立了m-END随机变量的Kolmogorov型指数不等式,进而得到m-END随机阵列的完全q阶矩收敛性,所得结果改进和推广了已有文献的结论 .
关键词 m-END 随机阵列 指数不等式 完全q阶矩收敛
下载PDF
A novel policy iteration based deterministic Q-learning for discrete-time nonlinear systems 被引量:8
3
作者 WEI QingLai LIU DeRong 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第12期143-157,共15页
In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic no... In this paper, a novel iterative Q-learning algorithm, called "policy iteration based deterministic Qlearning algorithm", is developed to solve the optimal control problems for discrete-time deterministic nonlinear systems. The idea is to use an iterative adaptive dynamic programming(ADP) technique to construct the iterative control law which optimizes the iterative Q function. When the optimal Q function is obtained, the optimal control law can be achieved by directly minimizing the optimal Q function, where the mathematical model of the system is not necessary. Convergence property is analyzed to show that the iterative Q function is monotonically non-increasing and converges to the solution of the optimality equation. It is also proven that any of the iterative control laws is a stable control law. Neural networks are employed to implement the policy iteration based deterministic Q-learning algorithm, by approximating the iterative Q function and the iterative control law, respectively. Finally, two simulation examples are presented to illustrate the performance of the developed algorithm. 展开更多
关键词 adaptive critic designs adaptive dynamic programming approximate dynamic programming q-LEARNING policy iteration neural networks nonlinear systems optimal control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部