A homotopy formula for a loced q-concave wedge in Stein manifolds is obtained, by using this formula the -equation on local q-concave wedges is solved, and an extension problem on local q-concave wedges is discussed.
A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman...A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula without boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local g-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the interpolation of functions.展开更多
文摘A homotopy formula for a loced q-concave wedge in Stein manifolds is obtained, by using this formula the -equation on local q-concave wedges is solved, and an extension problem on local q-concave wedges is discussed.
基金National Natural Science Foundation and Mathematical "Tian Yuan" Foundation of China (10271097 and TY10126033)
文摘A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms on a local q-concave wedge in a complex manifold is obtained. By constructing the new weighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula without boundary integral of (r, s) differential forms, which is different from the classical one. The new weighted formula is especially suitable for the case of the local g-concave wedge with a non-smooth boundary, so one can avoid complex estimates of boundary integrals and the density of integral may be not defined on the boundary but only in the domain. Moreover, the weighted integral formulas have much freedom in applications such as in the interpolation of functions.