This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseud...This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseudoclassical states. According to the analysis, it is found that the superposition state of two coherent states with their phase differences π/2 and 3π/2, and the superposition state of two pseudoclassical states both do exhibit the amplitude-squared squeezing. Also, some specific states are found to exhibit even stronger squeezing effects when relative phase of the superposition is equal to the average photon number. Amplitude-squared squeezing is dependent on the difference in phase between two coherent states.展开更多
We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-s...We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.展开更多
By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of ...By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of squeezed operators and f-analogues of squeezed one-photon states, which are quite different from ones constructed by Song and Fan (Phys. Lett. A 294 (2002) 66). Subsequently, some nonclassical properties of the states are investigated in detail.展开更多
Ⅰ. INTRODUCTION The squeezed field state, which exhibits fluctuations in one quadrature component of field smaller than those associated with the vacuum state, at the cost of increased fluctuations in the other quadr...Ⅰ. INTRODUCTION The squeezed field state, which exhibits fluctuations in one quadrature component of field smaller than those associated with the vacuum state, at the cost of increased fluctuations in the other quadrature component, is one type of the pure quantum-mechanical states of the radiation field. The state has been extensively studied because of its potential applications in optical communications and weak signal detections since it was introduced by Stoler in 1970.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 10674038 and 10604042)National Basic Research Program of China (Grant No 2006CB302901)
文摘This paper discusses the amplitude-squared squeezing for the superposition of two coherent states with their phase differences being separately π/2, 3π/2, and π1, as well as for the superposition state of two pseudoclassical states. According to the analysis, it is found that the superposition state of two coherent states with their phase differences π/2 and 3π/2, and the superposition state of two pseudoclassical states both do exhibit the amplitude-squared squeezing. Also, some specific states are found to exhibit even stronger squeezing effects when relative phase of the superposition is equal to the average photon number. Amplitude-squared squeezing is dependent on the difference in phase between two coherent states.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerr- nonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060) and the Natural Science Foundation of Shandong Province, China (Grant No Y2004A09).
文摘By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of squeezed operators and f-analogues of squeezed one-photon states, which are quite different from ones constructed by Song and Fan (Phys. Lett. A 294 (2002) 66). Subsequently, some nonclassical properties of the states are investigated in detail.
基金Project supported by the National Natural Science Foundation of China
文摘Ⅰ. INTRODUCTION The squeezed field state, which exhibits fluctuations in one quadrature component of field smaller than those associated with the vacuum state, at the cost of increased fluctuations in the other quadrature component, is one type of the pure quantum-mechanical states of the radiation field. The state has been extensively studied because of its potential applications in optical communications and weak signal detections since it was introduced by Stoler in 1970.