With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harm...With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given.展开更多
The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of fun...The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.展开更多
文摘With the help of the classical Abel’s lemma on summation by parts and algorithm of q-hypergeometric summations, we deal with the summation, which can be written as multiplication of a q-hypergeometric term and q-harmonic numbers. This enables us to construct and prove identities on q-harmonic numbers. Several examples are also given.
文摘The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.