By solving a q-operational equation with formal power series,we prove a new q-exponential operational identity.This operational identity reveals an essential feature of the Rogers-Szegő polynomials and enables us to d...By solving a q-operational equation with formal power series,we prove a new q-exponential operational identity.This operational identity reveals an essential feature of the Rogers-Szegő polynomials and enables us to develop a systematic method to prove the identities involving the Rogers-Szegő polynomials.With this operational identity,we can easily derive,among others,the q-Mehler formula,the q-Burchnall formula,the q-Nielsen formula,the q-Doetsch formula,the q-Weisner formula,and the Carlitz formula for the Rogers-Szegő polynomials.This operational identity also provides a new viewpoint on some other basic q-formulas.It allows us to give new proofs of the q-Gauss summation and the second and third transformation formulas of Heine and give an extension of the q-Gauss summation.展开更多
We prove an estimate for Donaldson's Q-operator on a prequantized compact symplectic manifold.This estimate is an ingredient in the recent result of Keller and Lejmi(2017) about a symplectic generalization of Dona...We prove an estimate for Donaldson's Q-operator on a prequantized compact symplectic manifold.This estimate is an ingredient in the recent result of Keller and Lejmi(2017) about a symplectic generalization of Donaldson's lower bound for the L^2-norm of the Hermitian scalar curvature.展开更多
基金supported by National Natural Science Foundation of China (Grant No.11971173)Science and Technology Commission of Shanghai Municipality (Grant No.13dz2260400)。
文摘By solving a q-operational equation with formal power series,we prove a new q-exponential operational identity.This operational identity reveals an essential feature of the Rogers-Szegő polynomials and enables us to develop a systematic method to prove the identities involving the Rogers-Szegő polynomials.With this operational identity,we can easily derive,among others,the q-Mehler formula,the q-Burchnall formula,the q-Nielsen formula,the q-Doetsch formula,the q-Weisner formula,and the Carlitz formula for the Rogers-Szegő polynomials.This operational identity also provides a new viewpoint on some other basic q-formulas.It allows us to give new proofs of the q-Gauss summation and the second and third transformation formulas of Heine and give an extension of the q-Gauss summation.
基金supported by National Natural Science Foundation of China(Grant Nos.11401232 and 11528103)Agence nationale de la recherche(Grant No.ANR-14-CE25-0012-01)funded through the Institutional Strategy of the University of Cologne within the German Excellence Initiative and Deutsche Forschungsgemeinschaft Funded Project Sonderforschungsbereich Transregio 191
文摘We prove an estimate for Donaldson's Q-operator on a prequantized compact symplectic manifold.This estimate is an ingredient in the recent result of Keller and Lejmi(2017) about a symplectic generalization of Donaldson's lower bound for the L^2-norm of the Hermitian scalar curvature.