The polarization evolution of vector beams(VBs) generated by q-plates is investigated theoretically and experimentally.An analytical model is developed for the VB created by a general quarter-wave q-plate based on vec...The polarization evolution of vector beams(VBs) generated by q-plates is investigated theoretically and experimentally.An analytical model is developed for the VB created by a general quarter-wave q-plate based on vector diffraction theory.It is found that the polarization distribution of VBs varies with position and the value q.In particular,for the incidence of circular polarization,the exit vector vortex beam has polarization states that cover the whole surface of the Poincarésphere,thereby constituting a full Poincarébeam.For the incidence of linear polarization,the VB is not cylindrical but specularly symmetric,and exhibits an azimuthal spin splitting.These results are in sharp contrast with those derived by the commonly used model,i.e.,regarding the incident light as a plane wave.By implementing q-plates with dielectric metasurfaces,further experiments validate the theoretical results.展开更多
Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating ...Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.展开更多
基金National Natural Science Foundation of China(NSFC)(10904036)Natural Science Foundation of Hunan Province(2015JJ3036)+2 种基金National High Technology Research and Development Program(2012AA01A301-01)Growth Program for Young Teachers of Hunan UniversityChina Scholarship Council(CSC)([2013]3050)
文摘The polarization evolution of vector beams(VBs) generated by q-plates is investigated theoretically and experimentally.An analytical model is developed for the VB created by a general quarter-wave q-plate based on vector diffraction theory.It is found that the polarization distribution of VBs varies with position and the value q.In particular,for the incidence of circular polarization,the exit vector vortex beam has polarization states that cover the whole surface of the Poincarésphere,thereby constituting a full Poincarébeam.For the incidence of linear polarization,the VB is not cylindrical but specularly symmetric,and exhibits an azimuthal spin splitting.These results are in sharp contrast with those derived by the commonly used model,i.e.,regarding the incident light as a plane wave.By implementing q-plates with dielectric metasurfaces,further experiments validate the theoretical results.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0303700 and 2019YFA0308700)the National Natural Science Foundation of China(NSFC)(Nos.11874212,11890704,62035008,12004175,and 62175101)the Natural Science Foundation of Jiangsu Province(No.BK20200311)。
文摘Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.