In this paper, the complete moment convergence for L~p-mixingales are studied.Sufficient conditions are given for the complete moment convergence for the maximal partial sums of B-valued L~p-mixingales by utilizing th...In this paper, the complete moment convergence for L~p-mixingales are studied.Sufficient conditions are given for the complete moment convergence for the maximal partial sums of B-valued L~p-mixingales by utilizing the Rosenthal maximal type inequality for B-valued martingale difference sequence, which extend and improve the related known works in the literature.展开更多
为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习...为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习算法DDQN(Double Deep Q-Network)引入系统中,提出一种基于DDQN的平滑车速控制策略,从目标网络和经验回顾2个维度提升该算法的性能。基于元胞传输模型(Cellular Transmission Model,CTM)对宁夏高速公路某路段的交通流运行场景进行仿真,以车辆总通行时间和车流量为评价指标验证该系统的有效性,结果表明该系统能提高瓶颈区内拥堵路段车辆的通行效率。展开更多
设1<p2,0<α1,X是p一致可光滑空间的Banach空间,则对每个X值拟鞅f=(fn)n≥0∈pHασ(X)存在分解fn=sum form k∈Z to μkank(n≥0),并且‖f‖pHασ(X)+‖R(f)‖α~inf(sum form k∈Z to μkα)1/α,这里ak=(ank)n5≥0(k∈Z)是一...设1<p2,0<α1,X是p一致可光滑空间的Banach空间,则对每个X值拟鞅f=(fn)n≥0∈pHασ(X)存在分解fn=sum form k∈Z to μkank(n≥0),并且‖f‖pHασ(X)+‖R(f)‖α~inf(sum form k∈Z to μkα)1/α,这里ak=(ank)n5≥0(k∈Z)是一列(1,α,∞;p)拟鞅原子,并且在L1中收敛,supk∈Z‖ak*‖α<∞,(μk)k∈Z∈lα是非负实数列.对于拟鞅空间pHαS(X)和qKα(X)成立类似的结果.此外,利用拟鞅原子分解定理,证明了几个拟鞅不等式.展开更多
基金supported by the National Science Foundation of China(11271161)
文摘In this paper, the complete moment convergence for L~p-mixingales are studied.Sufficient conditions are given for the complete moment convergence for the maximal partial sums of B-valued L~p-mixingales by utilizing the Rosenthal maximal type inequality for B-valued martingale difference sequence, which extend and improve the related known works in the literature.
文摘为调整不同路段的限速值,平滑交通流,从而提升高速公路车辆通行的安全性和效率,针对交通瓶颈区设计一种基于深度强化学习的平滑车速管控系统。该系统主要包含动态限速启动、限速值确定与更新和情报板动态发布等3个模块。将深度强化学习算法DDQN(Double Deep Q-Network)引入系统中,提出一种基于DDQN的平滑车速控制策略,从目标网络和经验回顾2个维度提升该算法的性能。基于元胞传输模型(Cellular Transmission Model,CTM)对宁夏高速公路某路段的交通流运行场景进行仿真,以车辆总通行时间和车流量为评价指标验证该系统的有效性,结果表明该系统能提高瓶颈区内拥堵路段车辆的通行效率。
文摘设1<p2,0<α1,X是p一致可光滑空间的Banach空间,则对每个X值拟鞅f=(fn)n≥0∈pHασ(X)存在分解fn=sum form k∈Z to μkank(n≥0),并且‖f‖pHασ(X)+‖R(f)‖α~inf(sum form k∈Z to μkα)1/α,这里ak=(ank)n5≥0(k∈Z)是一列(1,α,∞;p)拟鞅原子,并且在L1中收敛,supk∈Z‖ak*‖α<∞,(μk)k∈Z∈lα是非负实数列.对于拟鞅空间pHαS(X)和qKα(X)成立类似的结果.此外,利用拟鞅原子分解定理,证明了几个拟鞅不等式.
基金Supported by the Natural Science Foundation of Hebei Province (A2011201053 , A2010000191 , A2012201054)the Natural Science Foundation of Hebei Education Commission (2010110)