For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of...For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.展开更多
The aerodynamic model of propeller,wing,fuselage and vertical tail are established for the tilt quad rotor(TQR)with partial tilt-wing,and then the flight dynamic model is established.Based on the six-degree-of-freedom...The aerodynamic model of propeller,wing,fuselage and vertical tail are established for the tilt quad rotor(TQR)with partial tilt-wing,and then the flight dynamic model is established.Based on the six-degree-of-freedom equation and the small disturbance linearization assumption,the trimming and stability of the tilt quad rotor with partial tilt-wing and the tilt quad rotor without tilt-wing are analyzed.The results show that in the hovering state,due to the existence of tilt-wing,the propeller wake reduces the downwash on the wing,thereby reducing the vertical weight gain of the aircraft.It is beneficial to increase the endurance time and improve the endurance performance.The transition corridor of the TQR with tilt-wing is narrower than that of the TQR without tilt-wing,but the transition corridor of TQR with tilt-wing still has a large space for design.Furthermore,the stability analysis shows that the Dutch roll damping ratio is larger,and in other modes the aircraft has a certain stability.The manipulation response analysis shows that in the transition mode the lateral-directional coupling is strong.展开更多
The Tilt Quad Rotor(TQR) has complex dynamics characteristics, especially in conversion mode. It is difficult to build the dynamic model of the TQR and the environmental factors have a great influence on it. To solve ...The Tilt Quad Rotor(TQR) has complex dynamics characteristics, especially in conversion mode. It is difficult to build the dynamic model of the TQR and the environmental factors have a great influence on it. To solve the problem of control in conversion mode of TQR, this paper carries out the design of the controller based on improved Active Disturbance Rejection Control(ADRC). According to the characteristics of flight in conversion mode, Tracking Differentiator(TD) with explicit model is used to solve the problem of multiple integrals when the system is high-order system. Extended State Observer(ESO) with Radial Basis Function(RBF) neural network is used to estimate and compensate for internal and external uncertainties, and the adaptive sliding mode control in Nonlinear State Error Feedback(NLSEF) is used to improve the response speed of the controller and reduce the parameters which should be tuned. Through the flight control simulation of the TQR, the validity and rationality of the control system are verified.展开更多
文摘For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The aerodynamic model of propeller,wing,fuselage and vertical tail are established for the tilt quad rotor(TQR)with partial tilt-wing,and then the flight dynamic model is established.Based on the six-degree-of-freedom equation and the small disturbance linearization assumption,the trimming and stability of the tilt quad rotor with partial tilt-wing and the tilt quad rotor without tilt-wing are analyzed.The results show that in the hovering state,due to the existence of tilt-wing,the propeller wake reduces the downwash on the wing,thereby reducing the vertical weight gain of the aircraft.It is beneficial to increase the endurance time and improve the endurance performance.The transition corridor of the TQR with tilt-wing is narrower than that of the TQR without tilt-wing,but the transition corridor of TQR with tilt-wing still has a large space for design.Furthermore,the stability analysis shows that the Dutch roll damping ratio is larger,and in other modes the aircraft has a certain stability.The manipulation response analysis shows that in the transition mode the lateral-directional coupling is strong.
基金sponsored by China Aerodynamics Research and Development Center Rotor Aerodynamics Key Laboratory opening topic fund。
文摘The Tilt Quad Rotor(TQR) has complex dynamics characteristics, especially in conversion mode. It is difficult to build the dynamic model of the TQR and the environmental factors have a great influence on it. To solve the problem of control in conversion mode of TQR, this paper carries out the design of the controller based on improved Active Disturbance Rejection Control(ADRC). According to the characteristics of flight in conversion mode, Tracking Differentiator(TD) with explicit model is used to solve the problem of multiple integrals when the system is high-order system. Extended State Observer(ESO) with Radial Basis Function(RBF) neural network is used to estimate and compensate for internal and external uncertainties, and the adaptive sliding mode control in Nonlinear State Error Feedback(NLSEF) is used to improve the response speed of the controller and reduce the parameters which should be tuned. Through the flight control simulation of the TQR, the validity and rationality of the control system are verified.