This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By i...This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.展开更多
The convective heat transfer of hybrid nanoliquids within a concentric annulus has wide engineering applications such as chemical industries, solar collectors, gas turbines, heat exchangers, nuclear reactors, and elec...The convective heat transfer of hybrid nanoliquids within a concentric annulus has wide engineering applications such as chemical industries, solar collectors, gas turbines, heat exchangers, nuclear reactors, and electronic component cooling due to their high heat transport rate. Hence, in this study, the characteristics of the heat transport mechanism in an annulus filled with the Ag-MgO/H_2O hybrid nanoliquid under the influence of quadratic thermal radiation and quadratic convection are analyzed. The nonuniform heat source/sink and induced magnetic field mechanisms are used to govern the basic equations concerning the transport of the composite nanoliquid. The dependency of the Nusselt number on the effective parameters(thermal radiation, nonlinear convection,and temperature-dependent heat source/sink parameter) is examined through sensitivity analyses based on the response surface methodology(RSM) and the face-centered central composite design(CCD). The heat transport of the composite nanoliquid for the spacerelated heat source/sink is observed to be higher than that for the temperature-related heat source/sink. The mechanisms of quadratic convection and quadratic thermal radiation are favorable for the momentum of the nanoliquid. The heat transport rate is more sensitive towards quadratic thermal radiation.展开更多
We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method ...We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method to update the sample density functions. We also prove the asymptotic convergence of this algorithm, and report some numerical results to illuminate its effectiveness.展开更多
This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simpl...This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simple off-diagonal bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighbourhood of the origin.Numerical examples compare the obtained results with the approximation power of diagonal Chisholm approximant and Taylor polynomial approximant.展开更多
This paper analysis the local behavior of the bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin. It is shown that the bivariate quadratic Herm...This paper analysis the local behavior of the bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin. It is shown that the bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighborhood of the origin.展开更多
This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encounter...This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.展开更多
This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal. A new linear approximation approach is advanced to calculate the sig...This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal. A new linear approximation approach is advanced to calculate the signal-to-noise ratio. In the linear approximation only the drift term is linearized, the multiplicative noise term is unchangeable. It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance, especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength A between the real and imaginary parts of the pump noise.展开更多
In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding ...In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.展开更多
In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which th...In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which the coefficients can be determined by solving a convex quadraticprogramming problem. And the experiment result shows that the approximation error of this algorithm is smaller than that of the polynomial-based fractal function approximation. This newalgorithm exploits the consistency between fractal and scaling function in multi-scale and multiresolution, has a better approximation effect and high potential in data compression, especially inimage compression.展开更多
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support...Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.展开更多
This paper presents a quadratic programming method for optimal multi-degree reduction of B6zier curves with G^1-continuity. The L2 and I2 measures of distances between the two curves are used as the objective function...This paper presents a quadratic programming method for optimal multi-degree reduction of B6zier curves with G^1-continuity. The L2 and I2 measures of distances between the two curves are used as the objective functions. The two additional parameters, available from the coincidence of the oriented tangents, are constrained to be positive so as to satisfy the solvability condition. Finally, degree reduction is changed to solve a quadratic problem of two parameters with linear constraints. Applications of degree reduction of Bezier curves with their parameterizations close to arc-length parameterizations are also discussed.展开更多
The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constrai...The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.展开更多
In this paper,we consider a class of quadratic maximization problems.For a subclass of the problems,we show that the SDP relaxation approach yields an approximation solution with the worst-case performance ratio at le...In this paper,we consider a class of quadratic maximization problems.For a subclass of the problems,we show that the SDP relaxation approach yields an approximation solution with the worst-case performance ratio at leastα=0.87856….In fact,the estimated worst-case performance ratio is dependent on the data of the problem withαbeing a uniform lower bound.In light of this new bound,we show that the actual worst-case performance ratio of the SDP relaxation approach (with the triangle inequalities added) is at leastα+δ_d if every weight is strictly positive,whereδ_d>0 is a constant depending on the problem dimension and data.展开更多
This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of ...This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.展开更多
This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and q...This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.展开更多
In this paper,we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions.We may apply it to a class of stochastic differential equations with the kernel of fractional Bro...In this paper,we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions.We may apply it to a class of stochastic differential equations with the kernel of fractional Brownian motion with Hurst parameter H∈(1/2,1)and subfractional Brownian motion with Hurst parameter H∈(1/2,1).As far as we know,this is the first result on stochastic Volterra equations in this topic.展开更多
基金the National Natural Science Foundation of China(62273058,U22A2045)the Key Science and Technology Projects of Jilin Province(20200401075GX)the Youth Science and Technology Innovation and Entrepreneurship Outstanding Talents Project of Jilin Province(20230508043RC)。
文摘This paper develops a quadratic function convex approximation approach to deal with the negative definite problem of the quadratic function induced by stability analysis of linear systems with time-varying delays.By introducing two adjustable parameters and two free variables,a novel convex function greater than or equal to the quadratic function is constructed,regardless of the sign of the coefficient in the quadratic term.The developed lemma can also be degenerated into the existing quadratic function negative-determination(QFND)lemma and relaxed QFND lemma respectively,by setting two adjustable parameters and two free variables as some particular values.Moreover,for a linear system with time-varying delays,a relaxed stability criterion is established via our developed lemma,together with the quivalent reciprocal combination technique and the Bessel-Legendre inequality.As a result,the conservatism can be reduced via the proposed approach in the context of constructing Lyapunov-Krasovskii functionals for the stability analysis of linear time-varying delay systems.Finally,the superiority of our results is illustrated through three numerical examples.
文摘The convective heat transfer of hybrid nanoliquids within a concentric annulus has wide engineering applications such as chemical industries, solar collectors, gas turbines, heat exchangers, nuclear reactors, and electronic component cooling due to their high heat transport rate. Hence, in this study, the characteristics of the heat transport mechanism in an annulus filled with the Ag-MgO/H_2O hybrid nanoliquid under the influence of quadratic thermal radiation and quadratic convection are analyzed. The nonuniform heat source/sink and induced magnetic field mechanisms are used to govern the basic equations concerning the transport of the composite nanoliquid. The dependency of the Nusselt number on the effective parameters(thermal radiation, nonlinear convection,and temperature-dependent heat source/sink parameter) is examined through sensitivity analyses based on the response surface methodology(RSM) and the face-centered central composite design(CCD). The heat transport of the composite nanoliquid for the spacerelated heat source/sink is observed to be higher than that for the temperature-related heat source/sink. The mechanisms of quadratic convection and quadratic thermal radiation are favorable for the momentum of the nanoliquid. The heat transport rate is more sensitive towards quadratic thermal radiation.
基金Project supported by the National Natural Science Foundation of China (No.10671117)Shanghai Leading Academic Discipline Project (No.J050101)the Youth Science Foundation of Hunan Education Department of China (No.06B037)
文摘We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method to update the sample density functions. We also prove the asymptotic convergence of this algorithm, and report some numerical results to illuminate its effectiveness.
基金Supported by National Natural Science Foundation of China( 699730 1 0,1 0 2 71 0 2 2 )
文摘This paper analyses the local behavior of the simple off-diagonal bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin.It is shown that the simple off-diagonal bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighbourhood of the origin.Numerical examples compare the obtained results with the approximation power of diagonal Chisholm approximant and Taylor polynomial approximant.
基金Supported by the NNSF of China(10271022, 60373093)Supported by the Science and Technology Development Foundation of Education Department of Liaoning Province(2004C060)
文摘This paper analysis the local behavior of the bivariate quadratic function approximation to a bivariate function which has a given power series expansion about the origin. It is shown that the bivariate quadratic Hermite-Padé form always defines a bivariate quadratic function and that this function is analytic in a neighborhood of the origin.
基金financially supported by the National Key R&D Program (2022YFB4201302)Guang Dong Basic and Applied Basic Research Foundation (2022A1515240057)the Huaneng Technology Funds (HNKJ20-H88).
文摘This paper offers an extensive overview of the utilization of sequential approximate optimization approaches in the context of numerically simulated large-scale continuum structures.These structures,commonly encountered in engineering applications,often involve complex objective and constraint functions that cannot be readily expressed as explicit functions of the design variables.As a result,sequential approximation techniques have emerged as the preferred strategy for addressing a wide array of topology optimization challenges.Over the past several decades,topology optimization methods have been advanced remarkably and successfully applied to solve engineering problems incorporating diverse physical backgrounds.In comparison to the large-scale equation solution,sensitivity analysis,graphics post-processing,etc.,the progress of the sequential approximation functions and their corresponding optimizersmake sluggish progress.Researchers,particularly novices,pay special attention to their difficulties with a particular problem.Thus,this paper provides an overview of sequential approximation functions,related literature on topology optimization methods,and their applications.Starting from optimality criteria and sequential linear programming,the other sequential approximate optimizations are introduced by employing Taylor expansion and intervening variables.In addition,recent advancements have led to the emergence of approaches such as Augmented Lagrange,sequential approximate integer,and non-gradient approximation are also introduced.By highlighting real-world applications and case studies,the paper not only demonstrates the practical relevance of these methods but also underscores the need for continued exploration in this area.Furthermore,to provide a comprehensive overview,this paper offers several novel developments that aim to illuminate potential directions for future research.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025)
文摘This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal. A new linear approximation approach is advanced to calculate the signal-to-noise ratio. In the linear approximation only the drift term is linearized, the multiplicative noise term is unchangeable. It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance, especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength A between the real and imaginary parts of the pump noise.
基金Project supported by the National Natural Science Foundation of China (Grant No.10571116)
文摘In this paper, a branch-and-bound method for solving multi-dimensional quadratic 0-1 knapsack problems was studied. The method was based on the Lagrangian relaxation and the surrogate constraint technique for finding feasible solutions. The Lagrangian relaxations were solved with the maximum-flow algorithm and the Lagrangian bounds was determined with the outer approximation method. Computational results show the efficiency of the proposed method for multi-dimensional quadratic 0-1 knapsack problems.
文摘In this paper, we study on the application of radical B-spline wavelet scaling function in fractal function approximation system. The paper proposes a wavelet-based fractal function approximation algorithm in which the coefficients can be determined by solving a convex quadraticprogramming problem. And the experiment result shows that the approximation error of this algorithm is smaller than that of the polynomial-based fractal function approximation. This newalgorithm exploits the consistency between fractal and scaling function in multi-scale and multiresolution, has a better approximation effect and high potential in data compression, especially inimage compression.
文摘Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.
基金Project supported by the National Natural Science Foundation ofChina (No. 60473130)the National Basic Research Program(973) of China (No. G2004CB318000)
文摘This paper presents a quadratic programming method for optimal multi-degree reduction of B6zier curves with G^1-continuity. The L2 and I2 measures of distances between the two curves are used as the objective functions. The two additional parameters, available from the coincidence of the oriented tangents, are constrained to be positive so as to satisfy the solvability condition. Finally, degree reduction is changed to solve a quadratic problem of two parameters with linear constraints. Applications of degree reduction of Bezier curves with their parameterizations close to arc-length parameterizations are also discussed.
基金Project supported by the National Natural Science Foundation of China(No. 10472003) the Natural Science Foundation of Beijing(No.3002002) the Science Foundation of Beijing Municipal Commission of Education(No.KM200410005019)
文摘The optimality criteria (OC) method and mathematical programming (MP) were combined to found the sectional optimization model of frame structures. Different methods were adopted to deal with the different constraints. The stress constraints as local constraints were approached by zero-order approximation and transformed into movable sectional lower limits with the full stress criterion. The displacement constraints as global constraints were transformed into explicit expressions with the unit virtual load method. Thus an approximate explicit model for the sectional optimization of frame structures was built with stress and displacement constraints. To improve the resolution efficiency, the dual-quadratic programming was adopted to transform the original optimization model into a dual problem according to the dual theory and solved iteratively in its dual space. A method called approximate scaling step was adopted to reduce computations and smooth the iterative process. Negative constraints were deleted to reduce the size of the optimization model. With MSC/Nastran software as structural solver and MSC/Patran software as developing platform, the sectional optimization software of frame structures was accomplished, considering stress and displacement constraints. The examples show that the efficiency and accuracy are improved.
基金This work was supported by the National Natural Science Foundation of China (Grant No.10401038)Startup Grant for Doctoral Research of Beijing University of Technology and Hong Kong RGC Earmarked Grant CUHK4242/04E
文摘In this paper,we consider a class of quadratic maximization problems.For a subclass of the problems,we show that the SDP relaxation approach yields an approximation solution with the worst-case performance ratio at leastα=0.87856….In fact,the estimated worst-case performance ratio is dependent on the data of the problem withαbeing a uniform lower bound.In light of this new bound,we show that the actual worst-case performance ratio of the SDP relaxation approach (with the triangle inequalities added) is at leastα+δ_d if every weight is strictly positive,whereδ_d>0 is a constant depending on the problem dimension and data.
基金the National Natural Science Foundation of China(No.11101261).
文摘This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases.
基金NSFC (Nos.10261001,10771040)Guangxi Province Science Foundation (No.0640001)
文摘This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.
基金support provided by the Key Scientific Research Project Plans of Henan Province Advanced Universities(No.24A110006)the NSFs of China(Grant Nos.11971154,12361030)by the Science and Technology Foundation of Jiangxi Education Department(Grant No.GJJ190265)。
文摘In this paper,we shall prove a Wong-Zakai approximation for stochastic Volterra equations under appropriate assumptions.We may apply it to a class of stochastic differential equations with the kernel of fractional Brownian motion with Hurst parameter H∈(1/2,1)and subfractional Brownian motion with Hurst parameter H∈(1/2,1).As far as we know,this is the first result on stochastic Volterra equations in this topic.